cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A247009 Number of permutations on [n] that are the n-th power of a permutation.

Original entry on oeis.org

1, 1, 1, 4, 9, 96, 190, 4320, 11025, 179200, 805896, 36288000, 63155400, 5748019200, 18861448320, 380872267776, 4108830350625, 334764638208000, 778062273788800, 115242726703104000, 310526396168644656, 15009607805018112000, 208853182616336294400
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Number of permutations p on [n] such that a permutation q on [n] exists with p=q^n.

Examples

			a(0) = 1: (), the empty permutation.
a(1) = 1: (1).
a(2) = 1: (1,2).
a(3) = 4: (1,2,3), (1,3,2), (2,1,3), (3,2,1).
a(4) = 9: (1,2,3,4), (1,3,4,2), (1,4,2,3), (2,3,1,4), (2,4,3,1), (3,1,2,4), (3,2,4,1), (4,1,3,2), (4,2,1,3).
		

Crossrefs

Main diagonal of A247005.

Programs

  • Maple
    with(combinat): with(numtheory): with(padic):
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(irem(j, mul(p^ordp(k, p), p=factorset(i)))=0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k), 0), j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[, 1, ] = 1;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[If[Mod[j, Product[p^IntegerExponent[k, p], {p, FactorInteger[i][[All, 1]]}]] == 0, (i-1)!^j*multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, k], 0], {j, 0, n/i}]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)

A155510 Possible cardinalities of the set of all k-th powers of the order n permutations, where k and n are some positive integers.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 16, 21, 24, 25, 36, 40, 45, 46, 56, 60, 80, 81, 96, 106, 120, 126, 145, 190, 225, 256, 270, 351, 400, 505, 576, 610, 666, 720, 721, 826, 855, 946, 1071, 1072, 1170, 1225, 1233, 1330, 1338, 1345, 1386, 1450, 1575, 1576, 1792, 1890, 2080, 2241
Offset: 1

Views

Author

Vladimir Letsko, Jan 23 2009

Keywords

Examples

			80 is in the sequence because the set {a^3|a in S_5} has 80 elements.
		

Crossrefs

Extensions

Corrected and extended by Max Alekseyev, Feb 08 2009
Some missing terms added by Max Alekseyev, Jan 24 2010
Previous Showing 11-12 of 12 results.