A340665 Decimal expansion of Product_{primes p == 3 (mod 5)} p^2/(p^2-1).
1, 1, 3, 5, 7, 6, 4, 8, 7, 8, 6, 6, 8, 9, 2, 1, 6, 2, 6, 8, 6, 8, 6, 4, 3, 0, 0, 9, 4, 7, 2, 0, 8, 2, 2, 8, 9, 5, 1, 1, 9, 3, 6, 4, 1, 3, 0, 0, 5, 4, 6, 8, 7, 4, 4, 1, 6, 4, 9, 9, 7, 4, 3, 0, 1, 6, 3, 4, 0, 6, 4, 3, 1, 6, 7, 2, 0, 0, 2, 9, 6, 6, 0, 9, 9, 0, 0, 6, 8, 4, 6, 0, 3, 7, 1, 9, 8, 3, 9, 6, 8, 5, 1, 9
Offset: 1
Examples
1.135764878668921626868643009472082289511936413...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..501
- R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions..., arXiv:1008.2547 Zeta_{m=5,n=3}(s=2).
- For links see A340628.
Crossrefs
Programs
-
Mathematica
(* Using Vaclav Kotesovec's function Z from A301430. *) $MaxExtraPrecision = 100; digits = 50; (* Adjust as needed. *) digitize[c_] := RealDigits[Chop[N[c, digits+10]], 10, digits][[1]]; digitize[Z[5, 3, 2]]
Formula
Equals Sum_{k>=1} 1/A004617(k)^2. - Amiram Eldar, Jan 24 2021
Comments