A253297
Primes p for which some multiple k*p > 2*p appears before p does in A098550.
Original entry on oeis.org
5, 7, 13, 17, 23, 29, 41, 67, 83, 97
Offset: 1
A253573
Rectangular array a(n,k) read by upwards antidiagonals: row A(n) is the result of applying the function defined in A098550 to the set comprising row n of A253572, for n >= 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 9, 1, 2, 3, 4, 9, 8, 1, 2, 3, 4, 9, 8, 27, 1, 2, 3, 4, 9, 8, 15, 16, 1, 2, 3, 4, 9, 8, 15, 16, 81, 1, 2, 3, 4, 9, 8, 15, 14, 5, 32, 1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 243, 1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 64
Offset: 2
Array A starts:
{1, 2, 3, 4, 9, 8, 27, 16, 81, 32, 243, 64, 729, 128, 2187}
{1, 2, 3, 4, 9, 8, 15, 16, 5, 6, 25, 12, 125, 18, 625}
{1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7}
{1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7}
{1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7}
{1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7}
-
r = 13; max = 300; prev = Table[2^j, {j, 0, max}]; Do[y[n] = {}; g = {-1}; next = Take[Union[Flatten[Table[Prime[n]^j*prev, {j, 0, max}]]], max]; prev = next; Do[AppendTo[y[n], next[[1]]]; next = Delete[next, 1], {3}]; While[g != {0}, a = y[n][[-1]]; b = y[n][[-2]]; g = FirstPosition[next, v_ /; GCD[a, v] == 1 && GCD[b, v] > 1, 0]; If[g != {0}, y[n] = Flatten[Append[y[n], next[[g]]]]; next = Delete[next, g]]], {n, 2, r}]; Flatten[Table[y[n - k + 1][[k]], {n, 2, r}, {k, n - 1}]] (* Array antidiagonals flattened *)
Original entry on oeis.org
2, 3, 10, 13, 21, 24, 33, 43, 46, 58, 61, 70, 75, 90, 97, 102, 111, 120, 133, 138, 141, 155, 162, 178, 187, 192, 200, 209, 214, 219, 247, 255, 262, 265, 286, 289, 302, 312, 319, 339, 346, 349, 366, 376, 392, 395, 413, 428, 435, 444, 449, 468, 471, 483, 496
Offset: 1
-
a256213 n = a256213_list !! (n-1)
a256213_list = filter ((== 1) . a010051' . a254077) [1..]
-- Reinhard Zumkeller, May 05 2015
-
f[n_] := Block[{s = Range@ n, j, k}, For[k = 4, k <= n, k++, j = 4; While[Nand[GCD[j, s[[k - 2]]] > GCD[j, s[[k - 1]]], !MemberQ[Take[s, k - 1], j]], j++]; s[[k]] = j]; s]; Position[f@ 500, ?PrimeQ] // Flatten (* _Michael De Vlieger, Apr 15 2015 *)
A253609
Array read by upwards antidiagonals: A(n, k) = index of prime(k)^n in A098550.
Original entry on oeis.org
2, 4, 3, 6, 5, 9, 14, 19, 11, 15, 29, 57, 94, 40, 22, 65, 171, 483, 269, 124, 23, 137, 549, 2549, 1996, 1071, 187, 30, 277, 1786, 13468, 14547, 12661, 1810, 273, 43, 546, 5563, 69298, 105091, 144229, 24916, 4142, 313, 51, 1109, 17088, 353423, 750571, 1624729, 335764, 74341, 5856, 505, 61
Offset: 1
Array begins:
2, 3, 9, 15, 22, 23, 30, 43, ...
4, 5, 11, 40, 124, 187, 273, 313, ...
6, 19, 94, 269, 1071, 1810, 4142, 5856, ...
14, 57, 483, 1996, 12661, 24916, 74341, 116524, ...
29, 171, 2549, 14547, 144229, 335764, 1300310, 2276597, ...
65, 549, 13468, 105091, 1624729, 4458533, 22501985, 43999361, ...
137, 1786, 69298, 750571, 18146462, 58762243, 387122632, 845496081, ...
Cf.
A251241 = {1} union {this array}.
Comments