A337075
Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with a proper divisor of n! and ending with 1.
Original entry on oeis.org
1, 1, 1, 3, 14, 48, 384, 1308, 40288, 933848, 21077680, 75690016, 5471262080, 7964665440, 54595767744, 17948164982144, 3454946386353664, 5010658671663616, 723456523262697984, 950502767770273280, 165679731871366906880, 8443707247468681128448
Offset: 0
The a(1) = 1 through a(4) = 14 chains (with n! prepended):
1 2/1 6/1 24/1
6/2/1 24/2/1
6/3/1 24/3/1
24/4/1
24/8/1
24/12/1
24/4/2/1
24/8/2/1
24/8/4/1
24/12/2/1
24/12/3/1
24/12/4/1
24/8/4/2/1
24/12/4/2/1
A336571 is the generalization to not just factorial numbers.
A337104 is the version for chains containing n!.
A071625 counts distinct prime multiplicities.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
-
chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
Table[chnstr[n!],{n,0,5}]
A337106
Number of nontrivial divisors of n!.
Original entry on oeis.org
0, 0, 0, 2, 6, 14, 28, 58, 94, 158, 268, 538, 790, 1582, 2590, 4030, 5374, 10750, 14686, 29374, 41038, 60798, 95998, 191998, 242878, 340030, 532222, 677374, 917278, 1834558, 2332798, 4665598, 5529598, 7864318, 12165118, 16422910, 19595518, 39191038, 60466174
Offset: 0
The a(3) = 2 through a(5) =14 nontrivial divisions:
6/2 24/2 120/2
6/3 24/3 120/3
24/4 120/4
24/6 120/5
24/8 120/6
24/12 120/8
120/10
120/12
120/15
120/20
120/24
120/30
120/40
120/60
A070824 counts nontrivial divisors.
A153823 counts proper divisors of n!.
A337107 has this sequence as column k = 3.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A337071 counts chains of divisors starting with n!.
A337105 counts chains of divisors from n! to 1.
-
Table[Length[DeleteCases[Divisors[n!],1|n!]],{n,10}]
-
from sympy import factorial, divisor_count
def A337106(n):
return 0 if n <= 1 else divisor_count(factorial(n))-2 # Chai Wah Wu, Aug 24 2020
A337257
Number of even divisors of n!.
Original entry on oeis.org
0, 0, 1, 2, 6, 12, 24, 48, 84, 140, 240, 480, 720, 1440, 2376, 3696, 5040, 10080, 13824, 27648, 38880, 57600, 91200, 182400, 232320, 325248, 510048, 649152, 882000, 1764000, 2246400, 4492800, 5356800, 7618560, 11796480, 15925248
Offset: 0
The a(2) = 1 through a(5) = 12 divisors:
2 2 2 2
6 4 4
6 6
8 8
12 10
24 12
20
24
30
40
60
120
A000265 gives the maximum odd divisor of n.
Factorial numbers:
A000142,
A022559,
A027423 (divisors),
A048656,
A071626,
A076716 (factorizations),
A325272,
A325273,
A325617,
A336414,
A336498.
-
Table[Length[Select[Divisors[n!],EvenQ]],{n,0,15}]
-
a(n) = sumdiv(n!, d, !(d%2)); \\ Michel Marcus, Aug 24 2020
A343940
Sum of numbers of ways to choose a k-chain of divisors of n - k, for k = 0..n - 1.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 66, 95, 135, 187, 256, 346, 463, 613, 803, 1040, 1336, 1703, 2158, 2720, 3409, 4244, 5251, 6461, 7911, 9643, 11707, 14157, 17058, 20480, 24502, 29212, 34707, 41094, 48496, 57053, 66926, 78296, 91369, 106376, 123581, 143276, 165786
Offset: 1
The a(8) = 45 chains:
() (1) (1/1) (1/1/1) (1/1/1/1) (1/1/1/1/1) (1/1/1/1/1/1)
(7) (2/1) (5/1/1) (2/1/1/1) (3/1/1/1/1) (2/1/1/1/1/1)
(2/2) (5/5/1) (2/2/1/1) (3/3/1/1/1) (2/2/1/1/1/1)
(3/1) (5/5/5) (2/2/2/1) (3/3/3/1/1) (2/2/2/1/1/1)
(3/3) (2/2/2/2) (3/3/3/3/1) (2/2/2/2/1/1)
(6/1) (4/1/1/1) (3/3/3/3/3) (2/2/2/2/2/1)
(6/2) (4/2/1/1) (2/2/2/2/2/2)
(6/3) (4/2/2/1)
(6/6) (4/2/2/2)
(4/4/1/1)
(4/4/2/1) (1/1/1/1/1/1/1)
(4/4/2/2)
(4/4/4/1)
(4/4/4/2)
(4/4/4/4)
Antidiagonal sums of the array (or row sums of the triangle)
A334997.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1.
A146291 counts divisors of n with k prime factors (with multiplicity).
A251683 counts strict length k + 1 chains of divisors from n to 1.
A253249 counts nonempty chains of divisors of n.
A334996 counts strict length k chains of divisors from n to 1.
A337255 counts strict length k chains of divisors starting with n.
- version counting all multisets of divisors (not just chains)
A343658,
-
Total/@Table[Length[Select[Tuples[Divisors[n-k],k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,0,n-1}]
A343936
Number of ways to choose a multiset of n divisors of n - 1.
Original entry on oeis.org
1, 2, 3, 10, 5, 56, 7, 120, 45, 220, 11, 4368, 13, 560, 680, 3876, 17, 26334, 19, 42504, 1771, 2024, 23, 2035800, 325, 3276, 3654, 201376, 29, 8347680, 31, 376992, 6545, 7140, 7770, 145008513, 37, 9880, 10660, 53524680, 41, 73629072, 43, 1712304, 1906884
Offset: 1
The a(1) = 1 through a(5) = 5 multisets:
{} {1} {1,1} {1,1,1} {1,1,1,1}
{2} {1,3} {1,1,2} {1,1,1,5}
{3,3} {1,1,4} {1,1,5,5}
{1,2,2} {1,5,5,5}
{1,2,4} {5,5,5,5}
{1,4,4}
{2,2,2}
{2,2,4}
{2,4,4}
{4,4,4}
The a(6) = 56 multisets:
11111 11136 11333 12236 13366 22266 23666
11112 11166 11336 12266 13666 22333 26666
11113 11222 11366 12333 16666 22336 33333
11116 11223 11666 12336 22222 22366 33336
11122 11226 12222 12366 22223 22666 33366
11123 11233 12223 12666 22226 23333 33666
11126 11236 12226 13333 22233 23336 36666
11133 11266 12233 13336 22236 23366 66666
The version for chains of divisors is
A163767.
Choosing n divisors of n gives
A343935.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
-
A067824 counts strict chains of divisors starting with n.
-
A074206 counts strict chains of divisors from n to 1.
-
A251683 counts strict length k + 1 chains of divisors from n to 1.
-
A334996 counts strict length-k chains of divisors from n to 1.
-
A337255 counts strict length-k chains of divisors starting with n.
-
A337256 counts strict chains of divisors of n.
-
A343662 counts strict length-k chains of divisors.
-
multchoo[n_,k_]:=Binomial[n+k-1,k];
Table[multchoo[DivisorSigma[0,n],n-1],{n,50}]
Comments