cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A056290 Number of primitive (period n) n-bead necklaces with exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 24, 300, 2400, 15750, 92680, 510288, 2691600, 13793850, 69309240, 343499100, 1686135352, 8221421250, 39901776360, 193053923860, 932142850800, 4495236287850, 21664357532920, 104388118174500, 503044634004000, 2425003910574000, 11696087875731600
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A001692.
Column k=5 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 5-j)*binomial(5, j)*(-1)^j, j=0..5):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 25 2015
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^# &]/n];
    a[n_] := Sum[b[n, 5 - j]*Binomial[5, j]*(-1)^j, {j, 0, 5}];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 06 2018, after Alois P. Heinz *)

Formula

sum mu(d)*A056285(n/d) where d|n.

A056291 Number of primitive (period n) n-bead necklaces with exactly six different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 2160, 23940, 211680, 1643544, 11748240, 79419060, 516257280, 3262440960, 20193277104, 123071683140, 741419995680, 4427489935680, 26264144909520, 155018839412052, 911509010152560, 5344538372696880, 31272099902089200, 182707081042818360
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A032164.
Column k=6 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 6-j)*binomial(6, j)*(-1)^j, j=0..6):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 25 2015
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^# &]/n];
    a[n_] := Sum[b[n, 6 - j]*Binomial[6, j]*(-1)^j, {j, 0, 6}];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 06 2018, after Alois P. Heinz *)

Formula

Sum mu(d)*A056286(n/d) where d|n.

A317852 Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.

Original entry on oeis.org

1, 1, 1, 3, 8, 26, 76, 247, 783, 2565, 8447, 28256, 95168, 323720, 1108415, 3821144, 13246307, 46158480, 161574043, 567925140, 2003653016, 7092953340, 25186731980, 89690452750, 320221033370, 1146028762599, 4110596336036, 14774346783745, 53203889807764, 191934931634880
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

Also the number of plane trees with n nodes where the sequence of branches directly under any given node has relatively prime run-lengths.

Examples

			The a(5) = 8 locally aperiodic plane trees:
  ((((o)))),
  (((o)o)), ((o(o))), (((o))o), (o((o))),
  ((o)oo), (o(o)o), (oo(o)).
The a(6) = 26 locally aperiodic plane trees:
  (((((o)))))  ((((o)o)))  (((o)oo))  ((o)ooo)
               (((o(o))))  ((o(o)o))  (o(o)oo)
               ((((o))o))  ((oo(o)))  (oo(o)o)
               ((o((o))))  (((o)o)o)  (ooo(o))
               ((((o)))o)  ((o(o))o)
               (o(((o))))  (o((o)o))
               (((o))(o))  (o(o(o)))
               ((o)((o)))  (((o))oo)
                           (o((o))o)
                           (oo((o)))
                           ((o)(o)o)
                           ((o)o(o))
                           (o(o)(o))
		

Crossrefs

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    aperplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[aperplane/@c],aperQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[aperplane[n]],{n,10}]
  • PARI
    Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))}
    seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ Andrew Howroyd, Feb 08 2020

Extensions

a(16)-a(17) from Robert Price, Sep 15 2018
Terms a(18) and beyond from Andrew Howroyd, Feb 08 2020

A254079 Number of primitive (=aperiodic) n-bead necklaces with colored beads of exactly 7 different colors.

Original entry on oeis.org

720, 17640, 258720, 2963520, 29317680, 263506320, 2215825920, 17758540440, 137337087888, 1033793011440, 7621696948320, 55289495222640, 396017903136240, 2808175618022544, 19754629731587280, 138087381577881960, 960370246763096400, 6652267408747194360
Offset: 7

Views

Author

Alois P. Heinz, Jan 25 2015

Keywords

Crossrefs

Column k=7 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 7-j)*binomial(7, j)*(-1)^j, j=0..7):
    seq(a(n), n=7..30);

A254080 Number of primitive (=aperiodic) n-bead necklaces with colored beads of exactly 8 different colors.

Original entry on oeis.org

5040, 161280, 3024000, 43545600, 534330720, 5891719680, 60227481600, 582295633920, 5397245411040, 48421936442880, 423440785541760, 3628271603174400, 30584600246448864, 254421149466401280, 2093705950217414400, 17078070713147136000, 138294714025711281360
Offset: 8

Views

Author

Alois P. Heinz, Jan 25 2015

Keywords

Crossrefs

Column k=8 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 8-j)*binomial(8, j)*(-1)^j, j=0..8):
    seq(a(n), n=8..30);

A254081 Number of primitive (=aperiodic) n-bead necklaces with colored beads of exactly 9 different colors.

Original entry on oeis.org

40320, 1632960, 38102400, 673596000, 10035083520, 133102569600, 1623972430080, 18615386790000, 203401119841920, 2140495978400640, 21860934514473600, 217932712305073920, 2130148393318725120, 20485620162998625600, 194378546540211264000, 1823813323809879402000
Offset: 9

Views

Author

Alois P. Heinz, Jan 25 2015

Keywords

Crossrefs

Column k=9 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 9-j)*binomial(9, j)*(-1)^j, j=0..9):
    seq(a(n), n=9..30);

A254082 Number of primitive (=aperiodic) n-bead necklaces with colored beads of exactly 10 different colors.

Original entry on oeis.org

362880, 18144000, 515592000, 10977120000, 195113318400, 3063348288000, 43943631732000, 588790762560000, 7481812222684800, 91158709273632000, 1073686615986821760, 12301136459932320000, 137753173599205449600, 1513588462073525376000, 16368017165881385004000
Offset: 10

Views

Author

Alois P. Heinz, Jan 25 2015

Keywords

Crossrefs

Column k=10 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 10-j)*binomial(10, j)*(-1)^j, j=0..10):
    seq(a(n), n=10..30);

A254083 Number of primitive (=aperiodic) 2n-bead necklaces with colored beads of exactly n different colors.

Original entry on oeis.org

1, 0, 3, 89, 5100, 510288, 79419060, 17758540440, 5397245411040, 2140495978400640, 1073686615986821760, 664582969579045104000, 497566995304189636425600, 443212653988584641970547200, 463237380681508395317004249600, 561422444732790213860667834854400
Offset: 0

Views

Author

Alois P. Heinz, Jan 25 2015

Keywords

Examples

			a(2) = 3: 0001, 0011, 0111.
		

Crossrefs

Cf. A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(2*n, n-j)*binomial(n, j)*(-1)^j, j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^#&]/n]; a[n_] := Sum[b[2n, n-j]*Binomial[n, j]*(-1)^j, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)

Formula

a(n) = A254040(2*n,n).
Previous Showing 11-18 of 18 results.