cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A260610 Suprafactorials: Product of first n hyperfactorials divided by the product of the first n superfactorials.

Original entry on oeis.org

1, 1, 2, 18, 1728, 4320000, 699840000000, 18525482136000000000, 204051433560311070720000000000, 2399547398533110254947300351672320000000000, 77759951835586717141477466390085274435584000000000000000000, 18011357710498321908881994832212360081640749122627567616000000000000000000000000
Offset: 0

Views

Author

Matthew Campbell, Jul 30 2015

Keywords

Examples

			a(3) = (Hyperfactorial(3)/Superfactorial(3)) * (Hyperfactorial(2)/Superfactorial(2)) * (Hyperfactorial(1)/Superfactorial(1)) * (Hyperfactorial(0)/Superfactorial(0)) = ((3^3 * 2^2 * 1^1)/(3! * 2! * 1!)) * ((2^2 * 1^1)/(2!*1!)) * (1^1/1!) * 1 = ((27 * 4)/(6 * 2)) * (4/2) * 1 = (108/12) * (4/2) = 9 * 2 = 18.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Hyperfactorial[n]/BarnesG[n+2], {n, 0, m}], {m, 0, 12}]
    Table[BarnesG[n+2]^(n-1) / Product[BarnesG[k]^3, {k, 1, n + 1}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 19 2023 *)
  • PARI
    a001142(n) = prod(m=1, n, binomial(n, m));
    a(n) = prod(k=0, n, a001142(k)); \\ Michel Marcus, Aug 06 2015

Formula

a(n) = A125760(n)/A055462(n).
a(n) = Product_{k=0..n} A001142(k).
a(n) = Product_{k=0..n} hyperfactorial(k)/superfactorial(k).
a(n) = Product_{i=1..n} (Product_{j=1..i} binomial(i,j)). - Pedro Caceres, Apr 13 2019
From Vaclav Kotesovec, Nov 19 2023: (Start)
a(n) = BarnesG(n+2)^(n-1) / Product_{k=1..n+1} BarnesG(k)^3.
a(n) ~ A^(2*n + 5/2) * exp(n^3/6 + 7*n^2/8 + 5*n/6 - 3*zeta(3)/(8*Pi^2) - 1/8) / ((2*Pi)^(n^2/4 + 3*n/4 + 1/2) * n^(n^2/4 + 7*n/12 + 7/24)), where A is the Glaisher-Kinkelin constant A074962. (End)

A372116 a(n) = Product_{k=0..n} (n+k)!^k.

Original entry on oeis.org

1, 2, 3456, 128994508800000, 21048441369734473363614597120000000000, 13080442484467245346116306952031286205761554346416540536012800000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2024

Keywords

Comments

The next term has 146 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(n + k)!^k, {k, 0, n}], {n, 0, 8}]

Formula

a(n) ~ 2^(2*n^3/3 + 5*n^2/4 + 2*n/3 + 1/24) * Pi^(n*(n+1)/4) * n^(5*n^3/6 + 5*n^2/4 + 5*n/12) / exp(31*n^3/36 + 7*n^2/8 - 1/24).
For n>=1, a(n) = a(n-1) * A368132(n) * (2*n-1)!^n.

A372140 a(n) = Product_{k=1..n} BarnesG(k)^k.

Original entry on oeis.org

1, 1, 1, 1, 16, 3981312, 2271857773302207479808, 133781874275586180035265927852035878702421114880000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2024

Keywords

Comments

The next term has 113 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[k]^k, {k, 1, n}], {n, 0, 8}]

Formula

a(n) ~ (2*Pi)^(n*(n^2 - 1)/6) * n^(n^4/8 - n^3/12 - n^2/6 + n/24 + 19/720) / (A^(n^2/2 + n/2 - 1/3) * exp(7*n^4/32 - 5*n^3/72 - 7*n^2/24 - n/24 - zeta(3)/(8*Pi^2) + zeta'(-3)/6 + 23/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.

A368806 a(n) = Product_{i=1..j, j=1..k, k=1..n} i*j*k.

Original entry on oeis.org

1, 1, 64, 60466176, 504857282956046106624, 46005119909369701466112000000000000000000000, 101230154592156481700985865260692304243040378536591360000000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[Product[i*j*k, {i,1,j}], {j,1,k}], {k,1,n}], {n, 0, 6}]
    Table[Product[k^(k*(k+1)/2) * k!^(k+1), {k, 1, n}], {n, 0, 6}]

Formula

a(n) = Product_{k=1..n} k^(k*(k+1)/2) * k!^(k+1).
a(n) ~ (2*Pi)^(n^2/4 + 3*n/4 + 1/2) * n^(n^3/2 + 7*n^2/4 + 7*n/4 + 1/2) / exp(n^3/2 + 3*n^2/2 + 23*n/24 - 1/8).

A371339 a(n) = Product_{k=1..n} A000178(k)^k.

Original entry on oeis.org

1, 1, 4, 6912, 47552535724032, 2344457420244640062508151026483200000, 556518660278190472985800630083758030134707790620313895060688076800000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[k+2]^k, {k, 1, n}], {n, 0, 8}]

Formula

a(n) = Product_{k=1..n} BarnesG(k+2)^k.
a(n) = A372140(n+2) / A055462(n)^2.
a(n) ~ (2*Pi)^(n*(n+1)*(n+2)/6) * n^(n^4/8 + 7*n^3/12 + 5*n^2/6 + 3*n/8 + 19/720) / (A^(n^2/2 + n/2 - 1/3) * exp(7*n^4/32 + 59*n^3/72 + 17*n^2/24 - n/24 + zeta(3)/(8*Pi^2) + zeta'(-3)/6 - 37/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.

A372117 a(n) = Product_{k=0..n} binomial(n+k, k)^k.

Original entry on oeis.org

1, 2, 108, 3200000, 1158107343750000, 119025168578031262646195453952, 82864944710388642300699757862681018776776867840000, 9481019710293786574190900386319772308050021208649248212215823364196925440000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n+k,k]^k, {k,0,n}], {n,0,10}]

Formula

a(n) = Product_{k=0..n} binomial(n + k, n)^k.
a(n) = A372116(n) / (A255269(n) * A067055(n)).
a(n) ~ 2^(2*n^3/3 + 3*n^2/4 + n/6 + 1/24) * exp(n^3/12 + n^2/4 - n/24 + zeta(3)/(8*Pi^2) - 1/24) / (sqrt(A) * Pi^(n^2/4 + n/4) * n^(n^2/4 + n/4 + 1/24)), where A is the Glaisher-Kinkelin constant A074962.

A372150 a(n) = Product_{k=1..n} k!^(k^2).

Original entry on oeis.org

1, 1, 16, 161243136, 1953714516870533385423459188736, 18637697331204402735774894643901575833450808531469488619520000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k!^(k^2), {k, 1, n}], {n, 0, 6}]

Formula

a(n) ~ (2*Pi)^(n^3/6 + n^2/4 + n/12) * n^(n^4/4 + 2*n^3/3 + n^2/2 + n/12 - 1/90) / (A^(1/6) * exp(5*n^4/16 + 5*n^3/9 + n^2/8 - n/12 - zeta(3)/(8*Pi^2) - zeta'(-3)/3 - 13/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.
Previous Showing 11-17 of 17 results.