cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A222310 Array read by antidiagonals: first row is 1, 2, 3, 4, ...; for subsequent rows, write i*j/gcd(i,j)^2 under ...i.j... in previous row.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 6, 2, 12, 4, 5, 30, 15, 20, 5, 15, 3, 10, 6, 30, 6, 105, 7, 21, 210, 35, 42, 7, 70, 6, 42, 2, 420, 12, 56, 8, 1, 70, 105, 10, 5, 84, 63, 72, 9, 5, 5, 14, 30, 3, 15, 1260, 20, 90, 10, 33, 165, 33, 462, 385, 1155, 77, 1980, 99, 110, 11, 55, 15, 11, 3, 154, 10, 462, 6, 330, 30, 132, 12, 65, 143, 2145, 195, 65, 10010, 1001, 78
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Examples

			Array begins:
1...2...3.....4......5......6.....7.....8.....9.....10
..2...6....12....20.....30....42.....56...72.....90
....3...2....15......6.....35....12....63....20
......6....30....10....210...420.....84..1260
........5.....3.....21......2.....5....15
...........15.....7.....42....10......3
.............105.....6.....105...30
........
		

Crossrefs

Cf. A036262. Leading diagonal is A222311 (cf. A222313).
Similar array with primes in the starting row is A255483.

Programs

  • Maple
    # To get first M rows of the array (s0 is A222311):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=50;
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    for i1 from 1 to M-1 do
    lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    # To produce A222310 (i.e., to read the array by antidiagonals):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=15;
    b1:=Array(1..M);
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    b1[1]:=s1;
    for i1 from 1 to M-1 do
    #lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    b1[i1+1]:=s2;
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    #[seq(s0[i],i=1..nops(s0))]; (that gives A222311)
    lis:=[]:
    for i from 1 to M do for j from 1 to i do
    lis:=[op(lis),b1[i-j+1][j]];
    od: od:
    [seq(lis[k],k=1..nops(lis))];
  • Mathematica
    a = r = {1}; Do[a = Join[a, Reverse[r = FoldList[#1*#2/GCD[#1, #2]^2 &, n, r]]], {n, 2, 13}]; a (* Ivan Neretin, May 14 2015 *)

A276579 Squarefree numbers larger than one for which A268669(A048675(n)) is a power of two.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 15, 17, 19, 21, 22, 23, 29, 31, 35, 37, 39, 41, 43, 46, 47, 53, 55, 59, 61, 67, 71, 73, 77, 79, 83, 85, 87, 89, 91, 97, 101, 103, 107, 109, 113, 118, 127, 131, 133, 137, 139, 143, 149, 151, 155, 157, 163, 167, 173, 179, 181, 183, 187, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2016

Keywords

Comments

Terms present in arrays A255483 & A276578, sorted into ascending order.

Crossrefs

Cf. array A255483 (A276578).
Subsequence of A005117.
A000040 is a subsequence.

A255484 a(n) = Product_{k=0..n} prime(k+1)*(binomial(n,k) mod 2).

Original entry on oeis.org

2, 6, 0, 210, 0, 0, 0, 9699690, 0, 0, 0, 0, 0, 0, 0, 32589158477190044730, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 525896479052627740771371797072411912900610967452630, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2015

Keywords

Comments

A123098 is a much better version of this sequence.

Crossrefs

Programs

  • Maple
    f:=n->mul(ithprime(k+1)*(binomial(n,k) mod 2),k=0..n);
    [seq(f(n),n=0..60)];
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A255484(n):
        return reduce(mul,(0 if ~n & k else prime(k+1) for k in range(n+1))) # Chai Wah Wu, Feb 09 2016
Previous Showing 11-13 of 13 results.