cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A255860 Least m > 0 such that gcd(m^n+10, (m+1)^n+10) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 20, 3, 2, 3, 320, 874, 6, 33, 1, 124, 465, 23433448460229, 81920, 3, 2, 82, 65, 2101, 1, 3, 3, 2398892314, 7270, 3, 11, 21, 2, 97546469, 1, 765170730, 6, 15, 3, 3, 23, 370460325141871548, 29206018, 3, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+10, (m+1)^0+10) = gcd(11, 11) = 11 for any m > 0, therefore a(0)=1 is the smallest possible positive value.
For n=1, gcd(m^n+10, (m+1)^n+10) = gcd(m+10, m+11) = 1, therefore a(1)=0.
For n=2, we have gcd(20^2+10, 21^2+10) = gcd(410, 451) = 41, and the pair (m,m+1)=(20,21) is the smallest which yields a GCD > 1, therefore a(2)=20.
		

Crossrefs

Programs

  • Mathematica
    A255860[n_] := Module[{m = 1}, While[GCD[m^n + 10, (m + 1)^n + 10] <= 1, m++]; m]; Join[{1, 0}, Table[A255860[n], {n, 2, 12}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=10,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}

Extensions

a(13)-a(36) from Hiroaki Yamanouchi, Mar 13 2015
a(37)-a(40) from Max Alekseyev, Aug 06 2015

A255861 Least m > 0 such that gcd(m^n+11, (m+1)^n+11) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 1, 2, 1, 23, 1, 19010820161, 1, 7, 1, 360, 1, 41953103, 1, 4, 1, 638386957517954762853, 1, 38884, 1, 2, 1, 2852, 1, 23, 1, 102, 1, 8384, 1, 36556, 1, 33, 1, 37, 1, 336, 1, 2, 1, 1123, 1, 19734, 1, 9, 1, 135356, 1, 399351, 1, 33, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(m^n+11, (m+1)^n+11) = gcd(m+11, m+12) = 1, therefore a(1)=0.
For n=2, we have gcd(2^2+11, 3^2+11) = gcd(15, 20) = 5, and the pair (m,m+1)=(2,3) is the smallest which yields a GCD > 1, therefore a(2)=2.
		

Crossrefs

Programs

  • Mathematica
    A255861[n_] := Module[{m = 1}, While[GCD[m^n + 11, (m + 1)^n + 11] <= 1, m++]; m]; Join[{1, 0}, Table[A255861[n], {n, 2, 6}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=11,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(2k)=1 for k>=0, because gcd(1^(2k)+11, 2^(2k)+11) = gcd(12, 4^k-1) = 3.

Extensions

a(7)-a(48) from Hiroaki Yamanouchi, Mar 12 2015
a(49)-a(52) from Max Alekseyev, Aug 06 2015

A255862 Least m > 0 such that gcd(m^n+12, (m+1)^n+12) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 3, 1926, 96, 6, 2, 26, 3, 320, 538, 27, 1, 145, 3, 6, 393216, 982, 3, 2557, 3, 2, 30, 18781248, 1, 6, 3, 188, 14, 145, 3, 2808, 3, 16, 24340653915, 6, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+12, (m+1)^0+12) = gcd(13, 13) = 13, therefore a(1)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+12, (m+1)^n+12) = gcd(m+12, m+13) = 1, therefore a(1)=0.
For n=2, see formula with k=0.
		

Crossrefs

Programs

  • Mathematica
    A255862[n_] := Module[{m = 1}, While[GCD[m^n + 12, (m + 1)^n + 12] <= 1, m++]; m]; Join[{1, 0}, Table[A255862[n], {n, 2, 22}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=12,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(6k+2) = 3 for k>=0, because 3^(6k+2) = 9^(3k+1), 4^(6k+2) = 16^(3k+1), and 9 = 16 = 2 (mod 7), 2^3 = 1 (mod 7) and 12 = -2 (mod 7), therefore 3^(6k+2)+12 = 4^(6k+2)+12 = 0 (mod 7) and gcd(3^(6k+2)+12, 4^(6k+2)+12) >= 7.

Extensions

a(23)-a(33) from Hiroaki Yamanouchi, Mar 13 2015
a(34)-a(36) from Max Alekseyev, Aug 07 2015

A255863 Least m > 0 such that gcd(m^n+13, (m+1)^n+13) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 26, 1, 5, 24308100, 1, 329, 71, 1, 6, 59, 1, 135, 5, 1, 23, 7711, 1, 82, 6, 1, 8, 320594291825643656342, 1, 45, 10, 1, 755, 1107, 1, 4279, 30269, 1, 5, 205961, 1, 259, 8, 1, 9, 101975, 1, 6491, 5, 1, 8
Offset: 0

Views

Author

M. F. Hasler, Mar 10 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(m^n+13, (m+1)^n+13) = gcd(m+13, m+14) = 1, therefore a(1)=0.
For n=2, gcd(26^2+13, 27^2+13) = 53, and (m, m+1) = (26, 27) is the smallest pair which yields a GCD > 1 here.
For n=0, n=3, n=6,... see formula.
		

Crossrefs

Programs

  • Mathematica
    A255863[n_] := Module[{m = 1}, While[GCD[m^n + 13, (m + 1)^n + 13] <= 1, m++]; m]; Join[{1, 0}, Table[A255863[n], {n, 2, 22}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=13,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(3k) = 1 for k>=0, because 1^(3k)+13 = 14, 2^(3k)+13 = 8^k+13 = 14 (mod 7), therefore gcd(1^(3k)+13, 2^(3k)+13) >= 7.

Extensions

a(5)-a(46) from Hiroaki Yamanouchi, Mar 12 2015

A255864 Least m > 0 such that gcd(m^n+14, (m+1)^n+14) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 1, 12, 1, 15, 1, 2, 1, 1929501, 1, 13228907223310811104028677, 1, 94, 1, 11, 1, 85364353, 1, 1563, 1, 49, 1, 9258095644888888790279763522646107297983, 1, 23, 1, 66, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.
a(29) with 141 decimal digits is too large to include here (see b-file).

Examples

			For n=1, gcd(m^n+14, (m+1)^n+14) = gcd(m+14, m+15) = 1, therefore a(1)=0.
For n=0 and n=2, see formula with k=0 and k=1.
For n=3, gcd(12^3+14, 13^3+14) = 67, and (m, m+1) = (12, 13) is the smallest pair which yields a GCD > 1 here.
		

Crossrefs

Programs

  • Mathematica
    A255864[n_] := Module[{m = 1}, While[GCD[m^n + 14, (m + 1)^n + 14] <= 1, m++]; m]; Join[{1, 0}, Table[A255864[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=14,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(2k) = 1 for k>=0, because gcd(1^(2k)+14, 2^(2k)+14) = gcd(15, 4^k-1) >= 3, since 4^k-1 = 1-1 = 0 (mod 3).

Extensions

a(11)-a(40) from Max Alekseyev, Aug 06 2015

A255865 Least m > 0 such that gcd(m^n+15, (m+1)^n+15) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 30, 5, 120, 133, 15, 14, 11, 5, 7680, 968, 18, 243, 26, 5, 9, 1844434621273219148118716000949433592399169477194046126, 8, 22173201293492286974730770140, 51, 5, 593, 5885, 41, 112, 15, 5, 23
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+15, (m+1)^0+15) = gcd(16, 16) = 16, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+15, (m+1)^n+15) = gcd(m+15, m+16) = 1, therefore a(1)=0.
For n=2, gcd(30^2+15, 31^2+15) = 61 and (m, m+1) = (30, 31) is the smallest pair which yields a GCD > 1 here.
For n=3, see formula with k=0.
		

Crossrefs

Programs

  • Mathematica
    A255865[n_] := Module[{m = 1}, While[GCD[m^n + 15, (m + 1)^n + 15] <= 1, m++]; m]; Join[{1, 0}, Table[A255865[n], {n, 2, 16}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=15,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(6k+3) = 5 for k>=0, because 5^(6k+3) = 125^(2k+1), 6^(6k+3) = 216^(2k+1), and 125 = 216 = -1 (mod 7), therefore gcd(5^(6k+3)+15, 6^(6k+3)+15) >= 7.

Extensions

a(17)-a(36) from Hiroaki Yamanouchi, Mar 12 2015
a(37)-a(42) from Max Alekseyev, Aug 07 2015

A255866 Least m > 0 such that gcd(m^n+16, (m+1)^n+16) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 2, 22, 128, 12, 2, 81, 1, 5982, 2, 11417025, 32768, 70471611388086, 2, 26, 1, 1019, 2, 12168420936538713481747, 48, 128, 2, 788, 1, 131711329, 2, 91, 13, 2920553219286322570768516629247, 2, 237, 1, 22, 2, 108, 27, 9404578, 2, 2859801, 1, 41772125, 2
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+16, (m+1)^0+16) = gcd(16, 16) = 16, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+16, (m+1)^n+16) = gcd(m+15, m+16) = 1, therefore a(1)=0.
For n=2, see formula with k=0.
For n=3, gcd(22^3+16, 23^3+16) = 31 and (m, m+1) = (22, 23) is the smallest pair which yields a GCD > 1 here.
		

Crossrefs

Programs

  • Mathematica
    A255866[n_] := Module[{m = 1}, While[GCD[m^n + 16, (m + 1)^n + 16] <= 1, m++]; m]; Join[{1, 0}, Table[A255866[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=16,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(4k+2) = 2 for k>=0, because 2^(4k+2) = 4^(2k+1), 3^(4k+2) = 9^(2k+1), and 4 = 9 = -1 (mod 5), therefore gcd(2^(4k+2)+16, 3^(4k+2)+16) >= 5.

Extensions

a(11)-a(42) from Max Alekseyev, Aug 06 2015

A255867 Least m > 0 such that gcd(m^n+17, (m+1)^n+17) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 1, 1925, 1, 189812175, 1, 2, 1, 116, 1, 55508752881180794569675021, 1, 337276, 1, 230, 1, 162, 1, 2628, 1, 15, 1, 3604979675443168377172749, 1, 53, 1, 248, 1, 254, 1, 5998484614, 1, 1323, 1, 2, 1, 42750021, 1, 51, 1, 17870, 1, 108, 1, 87, 1, 8274, 1, 2, 1, 35, 1, 4049, 1, 308, 1, 8885, 1, 2805086, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+17, (m+1)^0+17) = gcd(18, 18) = 18, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+17, (m+1)^n+17) = gcd(m+17, m+18) = 1, therefore a(1)=0.
For n=2, see formula with k=0.
For n=3, gcd(1925^3+17, 1926^3+17) = 1951 and (m, m+1) = (1925, 1926) is the smallest pair which yields a GCD > 1 here.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q1, q2, r, m, bestm,p,A;
      q1:= m^n + 17;
      q2:= (m+1)^n + 17;
      r:= resultant(q1,q2, m);
      bestm:= infinity;
      for p in numtheory:-factorset(r) do
        A:= [msolve(q1, p)];
        A:= select(s -> eval(q2, s) mod p = 0, A);
        bestm:= min(bestm, op(map(s -> subs(s,m), A)));
      od;
      if bestm = infinity then -1 else bestm fi
    end proc:
    f(0):= 1: f(1):=0:
    map(f, [$1..26]); # Robert Israel, May 31 2019
  • Mathematica
    A255867[n_] := Module[{m = 1}, While[GCD[m^n + 17, (m + 1)^n + 17] <= 1, m++]; m]; Join[{1, 0}, Table[A255867[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=17,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
    
  • Python
    from sympy import primefactors, resultant, nthroot_mod
    from sympy.abc import m
    def A255867(n):
        if n == 0: return 1
        k = 0
        for p in primefactors(resultant(m**n+17,(m+1)**n+17)):
            for d in (a for a in nthroot_mod(-17,n,p,all_roots=True) if pow(a+1,n,p)==-17%p):
                k = min(d,k) if k else d
        return k  # Chai Wah Wu, May 07 2024

Formula

a(2k) = 1 for k>=0, because gcd(1^(2k)+17, 2^(2k)+17) = gcd(18, 4^k-1) >= 3 since 4 = 1 (mod 3).

Extensions

a(5)-a(22) from Hiroaki Yamanouchi, Mar 12 2015
a(23)-a(60) from Max Alekseyev, Aug 06 2015
Previous Showing 11-18 of 18 results.