A258461
Number of partitions of n into parts of exactly 6 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 22, 289, 2957, 26073, 208516, 1558219, 11087756, 76079368, 507834013, 3318628444, 21330627775, 135325210699, 849659799754, 5290544981423, 32722489513367, 201296535378562, 1232850239039750, 7523511821431264, 45777353199866275, 277862479920868778
Offset: 6
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,6):
seq(a(n), n=6..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i](-1)^i/(i!(k - i)!), {i, 0, k}];
Table[T[n, 6], {n, 6, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A258462
Number of partitions of n into parts of exactly 7 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 29, 492, 6401, 70880, 704676, 6490951, 56524414, 471750267, 3810085912, 29989229859, 231255237311, 1754111872429, 13128442913712, 97189645384884, 713050007285941, 5192646586465458, 37581376345088462, 270593146237918806, 1939929376872664097
Offset: 7
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,7):
seq(a(n), n=7..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}];
Table[T[n, 7], {n, 7, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A258463
Number of partitions of n into parts of exactly 8 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 37, 788, 12705, 172520, 2084836, 23169639, 241881526, 2406802476, 23064505721, 214505275665, 1947297442670, 17332491414616, 151788374231505, 1311496639250495, 11205023121304298, 94832831557086797, 796244028801983324, 6640545376656071546
Offset: 8
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,8):
seq(a(n), n=8..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}];
Table[T[n, 8], {n, 8, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A258464
Number of partitions of n into parts of exactly 9 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 46, 1202, 23523, 384227, 5542879, 73055550, 899381476, 10501235760, 117575627562, 1272685923724, 13401470756233, 137945728220761, 1393299928219604, 13851195993228228, 135865787060383171, 1317624915100561406, 12654868264707446322, 120534359759023523561
Offset: 9
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,9):
seq(a(n), n=9..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}];
Table[T[n, 9], {n, 9, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A258465
Number of partitions of n into parts of exactly 10 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 56, 1762, 41143, 795657, 13499449, 208050040, 2979881876, 40300054520, 520576172762, 6478447651345, 78185947269684, 919805200917658, 10591351937396242, 119764715367192468, 1333512940732309728, 14652754322423701707, 159182411488944508232
Offset: 10
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,10):
seq(a(n), n=10..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}];
Table[T[n, 10], {n, 10, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A258457
Number of partitions of n into parts of exactly 2 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 4, 12, 30, 72, 160, 351, 743, 1561, 3219, 6616, 13456, 27312, 55139, 111166, 223472, 448902, 900305, 1804838, 3615137, 7239325, 14490368, 29000050, 58025059, 116090823, 232234573, 464554483, 929220024, 1858618215, 3717468189, 7435305664, 14871092926
Offset: 2
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,2):
seq(a(n), n=2..35);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
a[n_] := T[n, 2];
a /@ Range[2, 35] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Comments