cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A255961 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
Offset: 0

Views

Author

Alois P. Heinz, Mar 11 2015

Keywords

Comments

A(n,k) is the number of partitions of n when parts i are of k*i kinds. A(2,2) = 7: [2a], [2b], [2c], [2d], [1a,1a], [1a,1b], [1b,1b].

Examples

			Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6,     7, ...
  0,  3,   7,   12,   18,    25,    33,    42, ...
  0,  6,  18,   37,   64,   100,   146,   203, ...
  0, 13,  47,  111,  215,   370,   588,   882, ...
  0, 24, 110,  303,  660,  1251,  2160,  3486, ...
  0, 48, 258,  804, 1938,  4005,  7459, 12880, ...
  0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
		

Crossrefs

Rows n=0-3 give: A000012, A001477, A055998, A101853.
Main diagonal gives A255672.
Antidiagonal sums give A299166.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j*k).
T(n,k) = Sum_{i=0..k} C(k,i) * A257673(n,k-i).

A257674 INVERT transform of planar partitions.

Original entry on oeis.org

1, 1, 4, 13, 44, 144, 478, 1573, 5193, 17118, 56457, 186153, 613865, 2024192, 6674843, 22010313, 72579382, 239331323, 789198395, 2602391853, 8581422014, 28297352194, 93310894654, 307693910316, 1014624748161, 3345738548716, 11032617200372, 36380201398917
Offset: 0

Views

Author

Alois P. Heinz, May 03 2015

Keywords

Crossrefs

Row sums of A257673.
Cf. A000219.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          g(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..36);
  • Mathematica
    g[n_] := g[n] = If[n==0, 1, Sum[g[n-j] DivisorSigma[2, j], {j, 1, n}]/n];
    a[n_] := a[n] = If[n==0, 1, Sum[a[n-i] g[i], {i, 1, n}]];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Aug 22 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A257673(n,k).
a(n) ~ c * d^n, where d = 3.2975132503126723336836261261699651439543806296893328114462016186843..., c = 0.3713883419445088444000361183895708557141471246022776707501762842135... . - Vaclav Kotesovec, May 19 2015
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^k)^k). - Ilya Gutkovskiy, Oct 18 2018
Previous Showing 11-12 of 12 results.