cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A259282 Quasi-Carmichael numbers to at least one negative base.

Original entry on oeis.org

35, 77, 143, 187, 209, 221, 247, 299, 323, 391, 437, 493, 527, 561, 589, 713, 899, 943, 989, 1073, 1105, 1147, 1189, 1247, 1271, 1295, 1333, 1517, 1537, 1591, 1595, 1705, 1729, 1739, 1763, 1829, 1927, 1961, 2021, 2093, 2257, 2279, 2419, 2465, 2479, 2501, 2623
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 23 2015

Keywords

Examples

			a(1) = 35 because this is the first squarefree composite number n such that at least one negative integer b exists such that for every prime factor p of n applies that p+b divides n+b (-3): 35=5*7 and 2, 4 both divide 32.
		

Crossrefs

Programs

  • PARI
    for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); b=-f[1, 1]; until(c==0 || b==-1, b++; c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, print1(n, ", "))))))

A259283 Quasi-Carmichael numbers to at least one positive base.

Original entry on oeis.org

165, 231, 273, 357, 399, 598, 715, 935, 1015, 1105, 1547, 1595, 1885, 1886, 2015, 2093, 2387, 2397, 2451, 2465, 2585, 2679, 2737, 2821, 2915, 3059, 3445, 3913, 3965, 4123, 4991, 5015, 5467, 5719, 6097, 6545, 7055, 7189, 7285, 7553, 7843, 8555, 8569, 8715, 8855
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 23 2015

Keywords

Examples

			a(1) = 165 because this is the first squarefree composite number n such that at least one positive integer b except 0 exists such that for every prime factor p of n applies that p+b divides n+b (3): 165=3*5*11 and 6, 8, 14 all divide 168.
		

Crossrefs

Programs

  • PARI
    for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); b=0; until(c==0 || b==n, b++; c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, print1(n, ", "))))))

A029590 For n>0, a(n) is the least quasi-Carmichael number to base n; a(0) = least composite squarefree integer.

Original entry on oeis.org

6, 561, 1595, 35, 1705, 77, 13481, 187, 143, 209, 4807, 221, 14807, 493, 20723, 323, 7429, 437, 36593, 943, 713, 989, 1147, 1073, 899, 1537, 1271, 899, 1333, 1517, 104355281, 1591, 1517, 2993, 1591, 1517, 621193, 3397, 1763, 1763, 2623, 2021
Offset: 0

Views

Author

Keywords

Comments

a(n) is the least squarefree composite integer for which prime p | a(n) ==> p-n | a(n)-n.

Examples

			For n=6 the minimum is a(n)=13481. Prime factors of 13481 are 13, 17 and 61. We have 13481 - 6 = 13475, 13 - 6 = 7 and 13475 / 7 = 1925, 17 - 6 = 11 and 13475 / 11 = 1225, 61 - 6 = 55 and 13475 / 55 = 245. - _Elijah Beregovsky_, Feb 15 2020
		

Crossrefs

Cf. A029591 (base -n), A257750 (quasi-Carmichael numbers).

Programs

  • Mathematica
    qcQ[n_,k_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]];om=Length[e]; om>=2 && Max[e] == 1 && Min[p]>k && Length@Select[p, Divisible[n-k, #-k]&] == om]; seq[k_]:=SelectFirst[Range[1,50000], qcQ[#,k]&]; Print[seq/@Range[0,29]]; (* Elijah Beregovsky, Feb 15 2020 *)

A262252 Even Quasi-Carmichael numbers.

Original entry on oeis.org

598, 1886, 11590, 21098, 24734, 32578, 91078, 95170, 107606, 134930, 143318, 179998, 253598, 258482, 259010, 287274, 361730, 374402, 568514, 706142, 751394, 831290, 920782, 1074026, 1105646, 1327562, 1514602, 1548318, 1579394, 1742830, 1794854, 1808678, 1952222
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 16 2015

Keywords

Examples

			598 is even, composite and squarefree and at least one nonzero integer b exists such that for every prime factor p of n, p+b divides n+b (2): 598 = 2*13*23 and 4, 15, 25 all divide 600.
		

Crossrefs

Programs

  • PARI
    n=0; until(n==1000000, n+=2; if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; b=0; until(b==n, b+=2; c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, k++)); if(k>0, print1(n, ", ")))))

A263930 Number of quasi-Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 2, 27, 165, 734, 3109, 11568, 40820, 137850, 457191
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Oct 30 2015

Keywords

Comments

For quasi-Carmichael numbers see A257750.

Examples

			a(1) = 0 because there are no quasi-Carmichael numbers below 10^1.
a(2) = 2 because there are two quasi-Carmichael numbers below 10^2, namely, 35 and 77.
		

Crossrefs

Programs

Extensions

a(8)-a(10) from Dana Jacobsen, Apr 27 2017

A270860 Least Quasi-Carmichael number with n prime factors.

Original entry on oeis.org

35, 165, 6545, 179998, 7509579, 850253030
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Mar 24 2016

Keywords

Examples

			6545 = 5*7*11*17 and 12, 14, 18, 24 all divide 6552.
		

Crossrefs

Cf. A257750 (Quasi-Carmichael numbers).

Programs

Extensions

a(7) from Dana Jacobsen, Apr 04 2016
Previous Showing 11-16 of 16 results.