A257827 Positive integers whose square is the sum of 96 consecutive squares.
652, 724, 788, 1012, 1828, 2372, 2596, 2908, 6164, 6908, 7564, 9836, 17996, 23404, 25628, 28724, 60988, 68356, 74852, 97348, 178132, 231668, 253684, 284332, 603716, 676652, 740956, 963644, 1763324, 2293276, 2511212, 2814596, 5976172, 6698164, 7334708
Offset: 1
Examples
652 is in the sequence because 652^2 = 425104 = 13^2+14^2+...+108^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[652,724,788,1012,1828,2372,2596,2908,6164,6908, 7564,9836,17996,23404,25628,28724]; [n le 16 select I[n] else 10*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, May 11 2015
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, -1}, {652, 724, 788, 1012, 1828, 2372, 2596, 2908, 6164, 6908, 7564, 9836, 17996, 23404, 25628, 28724}, 40] (* Vincenzo Librandi, May 11 2015 *)
-
PARI
Vec(-4*x*(89*x^15 +83*x^14 +79*x^13 +71*x^12 +71*x^11 +79*x^10 +83*x^9 +89*x^8 -727*x^7 -649*x^6 -593*x^5 -457*x^4 -253*x^3 -197*x^2 -181*x -163) / (x^16-10*x^8+1) + O(x^100))
Formula
a(n) = 10*a(n-8) -a(n-16).
G.f.: -4*x*(89*x^15 +83*x^14 +79*x^13 +71*x^12 +71*x^11 +79*x^10 +83*x^9 +89*x^8 -727*x^7 -649*x^6 -593*x^5 -457*x^4 -253*x^3 -197*x^2 -181*x-163) / (x^16 -10*x^8 +1).
Comments