cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A258936 G.f.: Sum_{n=-oo..+oo} x^n * (1 - 2^n*x^n)^n.

Original entry on oeis.org

-1, -3, 7, -15, 89, -63, 121, -255, 3521, -13119, 18273, -4095, -40319, -16383, 425089, -2676735, 6141953, -262143, -22487551, -1048575, 173791233, -356171775, 176138241, -16777215, 2378907649, -5430575103, 3355336705, -38913703935, 164745740289, -1073741823, -770681831423, -4294967295, 4113638096897, -3796520402943, 1133869137921, -38542231207935, 87257121292289, -274877906943
Offset: 0

Views

Author

Paul D. Hanna, Nov 06 2015

Keywords

Comments

Compare to the curious identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
More generally, for all k we have the identity:
Sum_{n=-oo..+oo} x^n * (1 - k^n*x^n)^n = (-1) * Sum_{n=-oo..+oo} k*(k*x)^n * (1 - k*(k*x)^n)^n. - Paul D. Hanna, Dec 25 2015

Examples

			G.f.: A(x) = -1 - 3*x + 7*x^2 - 15*x^3 + 89*x^4 - 63*x^5 + 121*x^6 - 255*x^7 + 3521*x^8 - 13119*x^9 + 18273*x^10 - 4095*x^11 - 40319*x^12 + ...
		

Crossrefs

Cf. A260147.

Programs

  • PARI
    {a(n) = local(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*(1 - 2^k*x^k + x*O(x^n))^k ); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

G.f.: (-1) * Sum_{n=-oo..+oo} 2*(2*x)^n * (1 - 2*(2*x)^n)^n. - Paul D. Hanna, Dec 25 2015
It appears that for prime p >= 3, a(p) = 1 - 2^(p+1). - Peter Bala, Aug 06 2023

A260361 G.f.: Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function.

Original entry on oeis.org

2, 4, 2, 10, 2, 12, 16, 16, 2, 50, 24, 24, 58, 28, 72, 154, 2, 36, 302, 40, 142, 270, 332, 48, 242, 472, 574, 614, 60, 60, 2282, 64, 2, 1454, 1362, 2494, 628, 76, 1940, 3304, 3642, 84, 5266, 88, 662, 13180, 3544, 96, 994, 6106, 14292, 13602, 3434, 108, 8102, 14854, 16018, 24778, 7310, 120, 35684
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2015

Keywords

Comments

Compare to the curious identities:
(1) Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
(2) Sum_{n=-oo..+oo} (-x)^n * (1 + x^n)^n = 0.

Examples

			G.f.: A(x) = 2 + 4*x^2 + 2*x^4 + 10*x^6 + 2*x^8 + 12*x^10 + 16*x^12 + 16*x^14 + 2*x^16 + 50*x^18 + 24*x^20 +...
where A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 +...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 +...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n +...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; max = 2 terms; Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k  + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=1, sqrtint(2*n)+2, x^(k^2-k) *((1 + x^k)^k + (1 - x^k)^k) / (1 - x^(2*k)  + O(x^(2*n+2)) )^k ); polcoeff(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k)) + O(x^(n+1)) ); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

G.f.: Sum_{n=-oo..+oo} (-x)^n * (1 - x^n)^n.
G.f.: Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n)^n.
G.f.: Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n)^n.
G.f.: Sum_{n>=1} x^(n^2-n) *((1 + x^n)^n + (1 - x^n)^n) / (1 - x^(2*n))^n.
G.f.: Sum_{n=-oo..+oo} x^n * ((1 + x^n)^(2*n) + (1 - x^n)^(2*n)) = Sum_{n>=0} a(n)*x^n.
a(n) = 2*A260147(n).
a(2^n) = 2 for n > 0 (conjecture).
a(p) = 2*p+2 for primes p > 3 (conjecture).

A265266 G.f. A(x) satisfies: A(x) = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(2*n).

Original entry on oeis.org

1, 2, 5, 27, 143, 833, 5198, 33607, 223627, 1522249, 10546221, 74119591, 527150783, 3786896705, 27437431852, 200267244944, 1471209231873, 10869315344076, 80707738490984, 601977204069443, 4508156389422426, 33884634730883602, 255532279985062648, 1932864141175160374, 14660843479381675987, 111486308441258038306, 849773662058395948696, 6491244696415245552638, 49685280480631490670702, 381014689125058139363522, 2926949265189880054761750
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2016

Keywords

Comments

Compare to: Sum_{n=-oo..+oo} x^n * (c - x^n)^n = 0 for fixed |c| > 0.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 27*x^3 + 143*x^4 + 833*x^5 + 5198*x^6 + 33607*x^7 + 223627*x^8 + 1522249*x^9 + 10546221*x^10 + ...
Let A = g.f. A(x) where A(x) = P(x) + N(x) then
P(x) = 1 + x*(A - x)^2 + x^2*(A - x^2)^4 + x^3*(A - x^3)^6 + x^4*(A - x^4)^8 + x^5*(A - x^5)^10 + x^6*(A - x^6)^12 + x^7*(A - x^7)^14 + x^8*(A - x^8)^16 + ...
N(x) = x/(1-x*A)^2 + x^6/(1-x^2*A)^4 + x^15/(1-x^3*A)^6 + x^28/(1-x^4*A)^8 + x^45/(1-x^5*A)^10 + x^66/(1-x^6*A)^12 + x^91/(1-x^7*A)^14 + ...
Explicitly,
P(x) = 1 + x + 3*x^2 + 20*x^3 + 117*x^4 + 708*x^5 + 4535*x^6 + 29801*x^7 + 200369*x^8 + 1373999*x^9 + 9570641*x^10 + 67539460*x^11 + 481899317*x^12 + ...
N(x) = x + 2*x^2 + 7*x^3 + 26*x^4 + 125*x^5 + 663*x^6 + 3806*x^7 + 23258*x^8 + 148250*x^9 + 975580*x^10 + 6580131*x^11 + 45251466*x^12 + ...
		

Crossrefs

Cf. A260147.

Programs

  • PARI
    {a(n) = my(A=[1,1]); for(i=1,n, A=Vec( sum(n=-#A-1,#A+1, x^n*(Ser(A) - x^n)^(2*n) ) ) );A[n+1]}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    /* Quick print of terms 0..N (informal): */
    N = 40; A=[1]; for(i=1,N, A=Vec( sum(n=-#A-1,#A+1, x^n*(Ser(A) - x^n)^(2*n) ) ) );A

Formula

The g.f. A(x) = Sum_{n>=0} a(n)*x^n also satisfies:
(1) A(x) = Sum_{n=-oo..+oo} x^n * (A(x) + x^n)^(2*n).
(2) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - x^n*A(x))^(2*n).
(3) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + x^n*A(x))^(2*n).
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (A(x^2) - x^n)^n.
(5) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (A(x^2) + x^n)^n.
(6) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n*A(x^2))^n.
(7) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n*A(x^2))^n.
a(n) ~ c * d^n / n^(3/2), where d = 8.078575206447883305059904... and c = 0.294232997886629805825... - Vaclav Kotesovec, Sep 03 2017

A266330 Triangle, read by rows, of the coefficients in the g.f.: Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n.

Original entry on oeis.org

-1, 1, -1, 0, 1, -1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 2, 0, -2, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 3, -1, 1, -3, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 4, 0, 0, 0, -4, 0, 0, 0, 1, -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1, -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1, -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2015

Keywords

Comments

Compare to the curious identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
Note that the g.f.:
A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n
may be written
A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1)
such that row polynomials R(n,y) consist of square powers of y:
R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2).

Examples

			This triangle of coefficients T(n,k) begins:
  -1, 1;
  -1, 0, 1;
  -1, 1, -1, 1;
  -1, 0, 0, 0, 1;
  -1, 2, 0, -2, 0, 1;
  -1, 0, 0, 0, 0, 0, 1;
  -1, 3, -1, 1, -3, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 4, 0, 0, 0, -4, 0, 0, 0, 1;
  -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1;
  -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1;
  -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
in which the g.f. of column k > 0 is given by:
z^(k-1)*(1 - z^(k-1))^(k-1) + z^(k*(k+1))/(z^(k+1) - 1)^(k+1).
...
G.f.: A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n may be written as
A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1), where row polynomials R(n,y) consist of square powers of y:
R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2);
this triangle lists the coefficients of y^(k^2) in R(n,y), which begin:
  R(0,y) = y - 1;
  R(1,y) = y^4 - 1;
  R(2,y) = y^9 - y^4 + y - 1;
  R(3,y) = y^16 - 1;
  R(4,y) = y^25 - 2*y^9 + 2*y - 1;
  R(5,y) = y^36 - 1;
  R(6,y) = y^49 - 3*y^16 + y^9 - y^4 + 3*y - 1;
  R(7,y) = y^64 - 1;
  R(8,y) = y^81 - 4*y^25 + 4*y - 1;
  R(9,y) = y^100 + 3*y^16 - 3*y^4 - 1;
  R(10,y) = y^121 - 5*y^36 + 5*y - 1;
  R(11,y) = y^144 - 1;
  R(12,y) = y^169 - 6*y^49 + 6*y^25 - y^16 + y^9 - 6*y^4 + 6*y - 1;
  R(13,y) = y^196 - 1;
  R(14,y) = y^225 - 7*y^64 + 7*y - 1;
  R(15,y) = y^256 + 10*y^36 - 10*y^4 - 1;
  R(16,y) = y^289 - 8*y^81 - 4*y^25 + 4*y^9 + 8*y - 1;
  R(17,y) = y^324 - 1;
  R(18,y) = y^361 - 9*y^100 + 15*y^49 - 15*y^4 + 9*y - 1; ...
		

Crossrefs

Cf. A217668, A260147 (y=-1).

Programs

  • PARI
    /* Prints rows 0..50 of this triangle: */
    {SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
    T(n,k)=polcoeff(V[n+1]*y^(n+1) + y*O(y^((n+1)^2)), k^2)}
    for(n=0,50,for(k=0,n+1,print1( T(n,k), ", "));print(""))
    
  • PARI
    /* Quick print of row polynomials (informal): */
    {SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
    for(n=1,50,print("R("n-1",y) = "V[n]*y^n";")) }
    
  • PARI
    /* Compare these sums (informal sanity check): */
    Axy = sum(n=-16,16, x^n*y^n*(y^n-x^n +O(x^16))^n )
    Axy = -(1/y)/(1-x/y) + sum(n=1,15, y^(n^2-1) * ( (x/y)^(n-1)*(1 - (x/y)^(n-1))^(n-1) + (x/y)^(n*(n+1)) / ((x/y)^(n+1) - 1)^(n+1) ) +O(x^16) )

Formula

G.f.: -(1/y)/(1-z) + (1/y) * Sum_{n>=1} y^(n^2) * ( z^(n-1)*(1 - z^(n-1))^(n-1) + z^(n*(n+1)) / (z^(n+1) - 1)^(n+1) ) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n, where z = x/y.
Row sums are all zeros.
Row sums of absolute values of terms yield 2 * A217668(n) for row n>=0.
Sum_{k=0..2*n+1} (-1)^k * T(2*n,k) = (-2) * A260147(n) for n>=0.
Sum_{k=0..2*n+2} (-1)^k * T(2*n+1,k) = 0 for n>=0.
Sum_{k=0..2*n+1} I^(k^2) * T(2*n,k) = (I-1) * A260147(n) for n>=0, where I^2 = -1.
Sum_{k=0..2*n+2} I^(k^2) * T(2*n+1,k) = 0 for n>=0, where I^2 = -1.

A268298 G.f.: Sum_{n=-oo..+oo} x^n * (1 - x^n)^(3*n).

Original entry on oeis.org

1, 1, -3, 1, -12, -9, -8, -20, -59, 1, -43, -54, -101, -77, -89, 127, -307, -135, -26, -170, 73, 85, 199, -252, -888, 1066, 924, 1, 1177, -405, 2970, -464, 1009, -164, 5577, 10396, -2978, -665, 10869, -1286, 14576, -819, 15499, -902, 19934, 17551, 32546, -1080, -51905, 53089, 74231, -24309, 55317, -1377, -80, 42439, 103857, -75581, 117016, -1710
Offset: 0

Views

Author

Paul D. Hanna, Mar 29 2016

Keywords

Comments

Compare to the identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.

Examples

			G.f.: A(x) = 1 + x - 3*x^2 + x^3 - 12*x^4 - 9*x^5 - 8*x^6 - 20*x^7 - 59*x^8 + x^9 - 43*x^10 - 54*x^11 - 101*x^12 - 77*x^13 - 89*x^14 + 127*x^15 +...
		

Crossrefs

Cf. A260147.

Programs

  • PARI
    {a(n) = local(A=1); A = sum(k=-n-1, n+1, x^k*(1-x^k + x*O(x^n) )^(3*k) ); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

G.f.: Sum_{n=-oo..+oo} (-1)^n * x^(3*n^2-n) / (1 - x^n)^(3*n).
For n>0, a(n) = 1 iff n = 3^k for k>=0 (conjecture).
Previous Showing 11-15 of 15 results.