A260361
G.f.: Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function.
Original entry on oeis.org
2, 4, 2, 10, 2, 12, 16, 16, 2, 50, 24, 24, 58, 28, 72, 154, 2, 36, 302, 40, 142, 270, 332, 48, 242, 472, 574, 614, 60, 60, 2282, 64, 2, 1454, 1362, 2494, 628, 76, 1940, 3304, 3642, 84, 5266, 88, 662, 13180, 3544, 96, 994, 6106, 14292, 13602, 3434, 108, 8102, 14854, 16018, 24778, 7310, 120, 35684
Offset: 0
G.f.: A(x) = 2 + 4*x^2 + 2*x^4 + 10*x^6 + 2*x^8 + 12*x^10 + 16*x^12 + 16*x^14 + 2*x^16 + 50*x^18 + 24*x^20 +...
where A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 +...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 +...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n +...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n +...
-
terms = 100; max = 2 terms; Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
-
{a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
-
{a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
-
{a(n) = local(A=1); A = sum(k=1, sqrtint(2*n)+2, x^(k^2-k) *((1 + x^k)^k + (1 - x^k)^k) / (1 - x^(2*k) + O(x^(2*n+2)) )^k ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
-
{a(n) = local(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k)) + O(x^(n+1)) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
A265266
G.f. A(x) satisfies: A(x) = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(2*n).
Original entry on oeis.org
1, 2, 5, 27, 143, 833, 5198, 33607, 223627, 1522249, 10546221, 74119591, 527150783, 3786896705, 27437431852, 200267244944, 1471209231873, 10869315344076, 80707738490984, 601977204069443, 4508156389422426, 33884634730883602, 255532279985062648, 1932864141175160374, 14660843479381675987, 111486308441258038306, 849773662058395948696, 6491244696415245552638, 49685280480631490670702, 381014689125058139363522, 2926949265189880054761750
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 27*x^3 + 143*x^4 + 833*x^5 + 5198*x^6 + 33607*x^7 + 223627*x^8 + 1522249*x^9 + 10546221*x^10 + ...
Let A = g.f. A(x) where A(x) = P(x) + N(x) then
P(x) = 1 + x*(A - x)^2 + x^2*(A - x^2)^4 + x^3*(A - x^3)^6 + x^4*(A - x^4)^8 + x^5*(A - x^5)^10 + x^6*(A - x^6)^12 + x^7*(A - x^7)^14 + x^8*(A - x^8)^16 + ...
N(x) = x/(1-x*A)^2 + x^6/(1-x^2*A)^4 + x^15/(1-x^3*A)^6 + x^28/(1-x^4*A)^8 + x^45/(1-x^5*A)^10 + x^66/(1-x^6*A)^12 + x^91/(1-x^7*A)^14 + ...
Explicitly,
P(x) = 1 + x + 3*x^2 + 20*x^3 + 117*x^4 + 708*x^5 + 4535*x^6 + 29801*x^7 + 200369*x^8 + 1373999*x^9 + 9570641*x^10 + 67539460*x^11 + 481899317*x^12 + ...
N(x) = x + 2*x^2 + 7*x^3 + 26*x^4 + 125*x^5 + 663*x^6 + 3806*x^7 + 23258*x^8 + 148250*x^9 + 975580*x^10 + 6580131*x^11 + 45251466*x^12 + ...
-
{a(n) = my(A=[1,1]); for(i=1,n, A=Vec( sum(n=-#A-1,#A+1, x^n*(Ser(A) - x^n)^(2*n) ) ) );A[n+1]}
for(n=0,40,print1(a(n),", "))
-
/* Quick print of terms 0..N (informal): */
N = 40; A=[1]; for(i=1,N, A=Vec( sum(n=-#A-1,#A+1, x^n*(Ser(A) - x^n)^(2*n) ) ) );A
A266330
Triangle, read by rows, of the coefficients in the g.f.: Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n.
Original entry on oeis.org
-1, 1, -1, 0, 1, -1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 2, 0, -2, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 3, -1, 1, -3, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 4, 0, 0, 0, -4, 0, 0, 0, 1, -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1, -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1, -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
This triangle of coefficients T(n,k) begins:
-1, 1;
-1, 0, 1;
-1, 1, -1, 1;
-1, 0, 0, 0, 1;
-1, 2, 0, -2, 0, 1;
-1, 0, 0, 0, 0, 0, 1;
-1, 3, -1, 1, -3, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 4, 0, 0, 0, -4, 0, 0, 0, 1;
-1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1;
-1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1;
-1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
in which the g.f. of column k > 0 is given by:
z^(k-1)*(1 - z^(k-1))^(k-1) + z^(k*(k+1))/(z^(k+1) - 1)^(k+1).
...
G.f.: A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n may be written as
A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1), where row polynomials R(n,y) consist of square powers of y:
R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2);
this triangle lists the coefficients of y^(k^2) in R(n,y), which begin:
R(0,y) = y - 1;
R(1,y) = y^4 - 1;
R(2,y) = y^9 - y^4 + y - 1;
R(3,y) = y^16 - 1;
R(4,y) = y^25 - 2*y^9 + 2*y - 1;
R(5,y) = y^36 - 1;
R(6,y) = y^49 - 3*y^16 + y^9 - y^4 + 3*y - 1;
R(7,y) = y^64 - 1;
R(8,y) = y^81 - 4*y^25 + 4*y - 1;
R(9,y) = y^100 + 3*y^16 - 3*y^4 - 1;
R(10,y) = y^121 - 5*y^36 + 5*y - 1;
R(11,y) = y^144 - 1;
R(12,y) = y^169 - 6*y^49 + 6*y^25 - y^16 + y^9 - 6*y^4 + 6*y - 1;
R(13,y) = y^196 - 1;
R(14,y) = y^225 - 7*y^64 + 7*y - 1;
R(15,y) = y^256 + 10*y^36 - 10*y^4 - 1;
R(16,y) = y^289 - 8*y^81 - 4*y^25 + 4*y^9 + 8*y - 1;
R(17,y) = y^324 - 1;
R(18,y) = y^361 - 9*y^100 + 15*y^49 - 15*y^4 + 9*y - 1; ...
-
/* Prints rows 0..50 of this triangle: */
{SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
T(n,k)=polcoeff(V[n+1]*y^(n+1) + y*O(y^((n+1)^2)), k^2)}
for(n=0,50,for(k=0,n+1,print1( T(n,k), ", "));print(""))
-
/* Quick print of row polynomials (informal): */
{SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
for(n=1,50,print("R("n-1",y) = "V[n]*y^n";")) }
-
/* Compare these sums (informal sanity check): */
Axy = sum(n=-16,16, x^n*y^n*(y^n-x^n +O(x^16))^n )
Axy = -(1/y)/(1-x/y) + sum(n=1,15, y^(n^2-1) * ( (x/y)^(n-1)*(1 - (x/y)^(n-1))^(n-1) + (x/y)^(n*(n+1)) / ((x/y)^(n+1) - 1)^(n+1) ) +O(x^16) )
A268298
G.f.: Sum_{n=-oo..+oo} x^n * (1 - x^n)^(3*n).
Original entry on oeis.org
1, 1, -3, 1, -12, -9, -8, -20, -59, 1, -43, -54, -101, -77, -89, 127, -307, -135, -26, -170, 73, 85, 199, -252, -888, 1066, 924, 1, 1177, -405, 2970, -464, 1009, -164, 5577, 10396, -2978, -665, 10869, -1286, 14576, -819, 15499, -902, 19934, 17551, 32546, -1080, -51905, 53089, 74231, -24309, 55317, -1377, -80, 42439, 103857, -75581, 117016, -1710
Offset: 0
G.f.: A(x) = 1 + x - 3*x^2 + x^3 - 12*x^4 - 9*x^5 - 8*x^6 - 20*x^7 - 59*x^8 + x^9 - 43*x^10 - 54*x^11 - 101*x^12 - 77*x^13 - 89*x^14 + 127*x^15 +...
-
{a(n) = local(A=1); A = sum(k=-n-1, n+1, x^k*(1-x^k + x*O(x^n) )^(3*k) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
Comments