cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A261254 Coefficients in an asymptotic expansion of A261239 in falling factorials.

Original entry on oeis.org

1, -4, 2, -4, -21, -136, -996, -8152, -73811, -733244, -7938186, -93126716, -1178054657, -15998857056, -232339375664, -3594982133808, -59070662442383, -1027605845674036, -18873206761567638, -365015243426704372, -7416392564276075453, -157957992952546414328
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 12 2015

Keywords

Examples

			A261239(n)/(-3*n!) ~ 1 - 4/n + 2/(n*(n-1)) - 4/(n*(n-1)*(n-2)) - 21/(n*(n-1)*(n-2)*(n-3)) - 136/(n*(n-1)*(n-2)*(n-3)*(n-4)) - 996/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) - ... [coefficients are A261254]
A261239(n)/(-3*n!) ~ 1 - 4/n + 2/n^2 - 2/n^3 - 31/n^4 - 288/n^5 - 2939/n^6 - ... [coefficients are A261253]
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Assuming[Element[x, Reals], Series[E^(4/x) * x^4 / ExpIntegralEi[1/x]^4, {x, 0, 25}]], x]

Formula

a(n) ~ -4 * n! * (1 - 5/n + 5/n^2 - 30/n^4 - 286/n^5 - 2960/n^6 - 34890/n^7 - 459705/n^8 - 6678641/n^9 - 105999991/n^10).
For n>0, a(n) = Sum_{k=1..n} A261253(k) * Stirling1(n-1, k-1).

A059439 A diagonal of A059438.

Original entry on oeis.org

0, 0, 1, 2, 7, 32, 177, 1142, 8411, 69692, 642581, 6534978, 72754927, 880877928, 11530686953, 162331760494, 2446380427331, 39300220067668, 670480457586813, 12106985274788506, 230691361507912471, 4625811718758963136
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Comments

Self-convolution of A003319. - Vaclav Kotesovec, Aug 03 2015

Examples

			G.f. = x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 177*x^6 + 1142*x^7 + 8411*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_]:=a[n] = n!-Sum[k!*a[n-k], {k,1,n-1}]; Table[Sum[a[k]*a[n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2015 *)
    CoefficientList[Assuming[Element[x, Reals], Series[(1 - x*E^(1/x) / ExpIntegralEi[1/x])^2, {x, 0, 20}]], x] (* Vaclav Kotesovec, Aug 03 2015 *)

Formula

G.f.: (1-1/Sum (k! x^k ))^2.
For n>0, a(n) = A259472(n) + 2*A003319(n). - Vaclav Kotesovec, Aug 03 2015
a(n) ~ 2*(n-1)! * (1 - 1/n - 1/n^2 + 1/n^3 + 30/n^4 + 404/n^5 + 5379/n^6 + 76021/n^7 + 1155805/n^8 + 18931873/n^9 + 333434490/n^10), for coefficients see A260913. - Vaclav Kotesovec, Aug 03 2015

Extensions

More terms from Vladeta Jovovic, Mar 04 2001
Prepended a(0)=0, a(1)=0 from Vaclav Kotesovec, Aug 03 2015

A356291 Number of reducible permutations.

Original entry on oeis.org

0, 0, 1, 3, 11, 49, 259, 1593, 11227, 89537, 799475, 7917897, 86257643, 1025959345, 13234866787, 184078090137, 2746061570587, 43736283267137, 740674930879379, 13289235961616937, 251805086618856395, 5024288943352588369, 105295629327037117123
Offset: 0

Views

Author

Peter Luschny, Aug 02 2022

Keywords

Crossrefs

Programs

  • Maple
    A356291 := n -> n! - A003319(n): seq(A356291(n), n = 0..22);
  • Python
    def A356291_list(size: int):
        F, R, C = 1, [0], [1] + [0] * (size - 1)
        for n in range(1, size):
            F *= n
            for k in range(n, 0, -1):
                C[k] = C[k - 1] * k
            C[0] = -sum(C[k] for k in range(1, n + 1))
            R.append(F + C[0])
        return R
    print(A356291_list(23))
    # The test predicate, not suitable for calculation:
    def reducible(p) -> bool:
        return any(i for i in range(0, len(p))
            if all(p[j] < p[k]
                    for j in range(0, i)
                        for k in range(i, len(p))
        ))
    from itertools import permutations
    for n in range(8): print(len([p for p in permutations(range(n)) if reducible(p)]))

Formula

a(n) = n! - A003319(n).
a(n) = Sum_{j=1..n-1} (n - j)!*A003319(j).
a(n) ~ n!*(2/n + 1/n^2 + 5/n^3 + 32/n^4 + 253/n^5 + 2381/n^6 + ...). This follows from Vaclav Kotesovec's formula in A003319, see A260503 for more coefficients. In particular 2*(n-1)! < a(n) for n >= 5.

A260913 Coefficients in asymptotic expansion of sequence A059439.

Original entry on oeis.org

1, -1, -1, 1, 30, 404, 5379, 76021, 1155805, 18931873, 333434490, 6295452542, 127007655461, 2729179670279, 62275740709651, 1504740573206497, 38398859322225738, 1032354879165190692, 29174916098556605939, 864859538577015162053, 26840211278794388530737
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 04 2015

Keywords

Examples

			A059439(n)/(2*(n-1)!) ~ 1 - 1/n - 1/n^2 + 1/n^3 + 30/n^4 + 404/n^5 + 5379/n^6 + ...
		

Crossrefs

Formula

Conjecture: a(k) ~ k * k! / (4 * (log(2))^(k+2)).

A305275 Coefficients in asymptotic expansion of sequence A302557.

Original entry on oeis.org

1, 0, 2, 6, 35, 256, 2187, 21620, 243947, 3098528, 43799819, 682540780, 11630529643, 215190967544, 4296657514283, 92083313483300, 2108244638675035, 51350077108834832, 1325682930813985547, 36157047428501464220, 1038793351537388253211, 31354977545074731373512
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 18 2018

Keywords

Examples

			A302557(n) / (exp(-1) * n!) ~ 1 + 2/n^2 + 6/n^3 + 35/n^4 + 256/n^5 + 2187/n^6 + ...
		

Crossrefs

Formula

a(k) ~ k! / (2 * exp(1) * (log(2))^(k+1)).
Previous Showing 11-15 of 15 results.