A306001
Number of unlabeled intersecting set-systems with no singletons on up to n vertices.
Original entry on oeis.org
1, 1, 2, 8, 84, 13000
Offset: 0
Non-isomorphic representatives of the a(3) = 8 set-systems:
{}
{{1,2}}
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
Cf.
A001206,
A051185,
A048143,
A261006,
A058891,
A261005,
A304998,
A305854-
A305857,
A305935,
A305999,
A306000.
A326874
BII-numbers of abstract simplicial complexes.
Original entry on oeis.org
0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 31, 42, 43, 47, 59, 63, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 159, 170, 171, 175, 187, 191, 255, 385, 387, 391, 393, 395, 399, 409, 411, 415, 427, 431, 443, 447, 511, 642, 643, 647, 650, 651, 655
Offset: 1
The sequence of all abstract simplicial complexes together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
15: {{1},{2},{1,2},{3}}
25: {{1},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
31: {{1},{2},{3},{1,2},{1,3}}
42: {{2},{3},{2,3}}
43: {{1},{2},{3},{2,3}}
47: {{1},{2},{3},{1,2},{2,3}}
59: {{1},{2},{3},{1,3},{2,3}}
63: {{1},{2},{3},{1,2},{1,3},{2,3}}
127: {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
128: {{4}}
129: {{1},{4}}
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SubsetQ[bpe/@bpe[#],DeleteCases[Union@@Subsets/@bpe/@bpe[#],{}]]&]
A327425
Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 1, 2, 6, 54
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
{1} {12} {123} {1234}
{12}{13}{23} {12}{134}{234}
{124}{134}{234}
{12}{13}{14}{234}
{123}{124}{134}{234}
{12}{13}{14}{23}{24}{34}
Unlabeled covering antichains are
A261005.
Cf.
A006126,
A014466,
A055621,
A293606,
A293993,
A305844,
A307249,
A319639,
A326704,
A327057,
A327058,
A327358,
A327359.
A327436
Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 1, 4, 29
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
{12} {12}{13} {12}{134} {12}{1345}
{12}{13}{14} {123}{145}
{12}{13}{24} {12}{13}{145}
{12}{13}{14}{23} {12}{13}{245}
{13}{24}{125}
{13}{124}{125}
{14}{123}{235}
{12}{13}{14}{15}
{12}{13}{14}{25}
{12}{13}{24}{35}
{12}{13}{14}{235}
{12}{13}{23}{145}
{12}{13}{45}{234}
{12}{14}{23}{135}
{12}{15}{134}{234}
{15}{23}{124}{134}
{15}{123}{124}{134}
{15}{123}{124}{234}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{15}{24}{34}
{12}{13}{14}{15}{234}
{12}{13}{14}{25}{234}
{12}{13}{14}{15}{23}{24}
{12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{15}{123}{124}{134}{234}
{12}{13}{14}{15}{23}{24}{34}
Cf.
A006602,
A014466,
A048143,
A261005,
A326704,
A326786,
A327112,
A327114,
A327426,
A327334,
A327336,
A327350,
A327351,
A327358.
Comments