cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A306001 Number of unlabeled intersecting set-systems with no singletons on up to n vertices.

Original entry on oeis.org

1, 1, 2, 8, 84, 13000
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. A singleton is an edge containing only one vertex.

Examples

			Non-isomorphic representatives of the a(3) = 8 set-systems:
{}
{{1,2}}
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A305856(n) - A000612(n). - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019

A326874 BII-numbers of abstract simplicial complexes.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 31, 42, 43, 47, 59, 63, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 159, 170, 171, 175, 187, 191, 255, 385, 387, 391, 393, 395, 399, 409, 411, 415, 427, 431, 443, 447, 511, 642, 643, 647, 650, 651, 655
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

An abstract simplicial complex is a set of finite nonempty sets (edges) that is closed under taking a nonempty subset of any edge.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of abstract simplicial complexes by number of covered vertices is given by A307249.

Examples

			The sequence of all abstract simplicial complexes together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    7: {{1},{2},{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   15: {{1},{2},{1,2},{3}}
   25: {{1},{3},{1,3}}
   27: {{1},{2},{3},{1,3}}
   31: {{1},{2},{3},{1,2},{1,3}}
   42: {{2},{3},{2,3}}
   43: {{1},{2},{3},{2,3}}
   47: {{1},{2},{3},{1,2},{2,3}}
   59: {{1},{2},{3},{1,3},{2,3}}
   63: {{1},{2},{3},{1,2},{1,3},{2,3}}
  127: {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],DeleteCases[Union@@Subsets/@bpe/@bpe[#],{}]]&]

A327425 Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 1, 2, 6, 54
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
    {1}  {12}  {123}         {1234}
               {12}{13}{23}  {12}{134}{234}
                             {124}{134}{234}
                             {12}{13}{14}{234}
                             {123}{124}{134}{234}
                             {12}{13}{14}{23}{24}{34}
		

Crossrefs

The labeled version is A327020.
Unlabeled covering antichains are A261005.
The weighted version is A327060.

A327436 Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).

Original entry on oeis.org

0, 0, 1, 1, 4, 29
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
  {12}  {12}{13}  {12}{134}         {12}{1345}
                  {12}{13}{14}      {123}{145}
                  {12}{13}{24}      {12}{13}{145}
                  {12}{13}{14}{23}  {12}{13}{245}
                                    {13}{24}{125}
                                    {13}{124}{125}
                                    {14}{123}{235}
                                    {12}{13}{14}{15}
                                    {12}{13}{14}{25}
                                    {12}{13}{24}{35}
                                    {12}{13}{14}{235}
                                    {12}{13}{23}{145}
                                    {12}{13}{45}{234}
                                    {12}{14}{23}{135}
                                    {12}{15}{134}{234}
                                    {15}{23}{124}{134}
                                    {15}{123}{124}{134}
                                    {15}{123}{124}{234}
                                    {12}{13}{14}{15}{23}
                                    {12}{13}{14}{23}{25}
                                    {12}{13}{14}{23}{45}
                                    {12}{13}{15}{24}{34}
                                    {12}{13}{14}{15}{234}
                                    {12}{13}{14}{25}{234}
                                    {12}{13}{14}{15}{23}{24}
                                    {12}{13}{14}{15}{23}{45}
                                    {12}{13}{14}{23}{24}{35}
                                    {15}{123}{124}{134}{234}
                                    {12}{13}{14}{15}{23}{24}{34}
		

Crossrefs

Formula

a(n > 2) = A261006(n) - A305028(n).
Previous Showing 31-34 of 34 results.