cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A349252 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.

Original entry on oeis.org

0, 3, 3, 4, 7, 8, 8, 0, 4, 5, 7, 8, 5, 6, 5, 0, 6, 6, 3, 8, 5, 9, 5, 6, 8, 5, 4, 7, 8, 8, 7, 3, 7, 7, 9, 9, 7, 1, 3, 7, 5, 9, 7, 3, 0, 4, 0, 5, 7, 3, 4, 9, 7, 4, 8, 2, 8, 6, 6, 5, 7, 6, 4, 2, 8, 8, 6, 8, 3, 6, 2, 2, 5, 2, 7, 9, 5, 8, 8, 3, 8, 1, 0, 7, 9, 5, 3, 4, 7, 4, 7, 5, 8, 6, 5, 8, 6, 4, 8, 6, 2, 2, 8, 2, 6, 6, 5, 1, 1, 1, 1, 2, 1, 8, 5, 5, 1, 7, 9, 8, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 4.

Examples

			0.0334788045785650663859568547887377997137597304057...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Pi^4 Log[2] + 630 Zeta'[4])/720, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^4) \\ Michel Marcus, Nov 12 2021

Formula

Equals (Pi^4 * log(2) + 630 * zeta'(4)) / 720.

A324021 Decimal expansion of integral_{x>0} tanh(x)^3/x^2 dx.

Original entry on oeis.org

1, 1, 5, 4, 7, 8, 5, 3, 1, 3, 3, 2, 3, 1, 7, 6, 2, 6, 4, 0, 5, 9, 0, 7, 0, 4, 5, 1, 9, 4, 1, 5, 2, 6, 1, 4, 7, 5, 3, 5, 2, 3, 7, 0, 9, 2, 4, 5, 0, 8, 9, 2, 4, 8, 9, 0, 9, 9, 1, 1, 0, 2, 2, 0, 2, 9, 1, 1, 3, 7, 8, 5, 7, 0, 5, 6, 1, 1, 9, 1, 3, 1, 9, 5, 4, 6, 5, 8, 5, 1, 8, 9, 5, 8, 6, 4, 4, 7, 5, 7, 7
Offset: 1

Views

Author

Jean-François Alcover, Sep 01 2019

Keywords

Examples

			1.15478531332317626405907045194152614753523709245089248909911022029...
		

Crossrefs

Cf. A074962 (Glaisher constant), A261506 (-zeta'(4)).

Programs

  • Mathematica
    RealDigits[N[5/6 - EulerGamma - 19 Log[2]/15 + 12 Log[Glaisher] - Log[Pi] + 90 Zeta'[4]/Pi^4, 101]][[1]]

Formula

5/6 - gamma - 19*log(2)/15 + 12*log(A) - log(Pi) + 90*zeta'(4)/Pi^4, where gamma is the Euler-Mascheroni constant, and A is the Glaisher constant.
Previous Showing 11-12 of 12 results.