cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A272498 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to eight.

Original entry on oeis.org

1, 9, 135, 1650, 23265, 316602, 4810806, 73880235, 1229123610, 21174714990, 388551217626, 7431930745668, 150102842702670, 3162843042018660, 69923464752835980, 1611044465380180974, 38759812951913315262, 969843174518264324850, 25246982138722170061950
Offset: 8

Views

Author

Alois P. Heinz, May 01 2016

Keywords

Crossrefs

Column k=8 of A262071.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(8):
    seq(a(n), n=8..30);

Formula

E.g.f.: x^8 * Product_{i=1..8} (i-1)!/(i!-x^i).

A272499 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to nine.

Original entry on oeis.org

1, 10, 165, 2200, 33605, 492492, 8018010, 131342640, 2321677930, 42349478600, 820275716546, 16515429370440, 350240612952230, 7731410818511380, 178693701272340540, 4296129057927296304, 107666415418378051950, 2801776425029317564400, 75741144900761549630850
Offset: 9

Views

Author

Alois P. Heinz, May 01 2016

Keywords

Crossrefs

Column k=9 of A262071.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(9):
    seq(a(n), n=9..30);

Formula

E.g.f.: x^9 * Product_{i=1..9} (i-1)!/(i!-x^i).

A272500 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to ten.

Original entry on oeis.org

1, 11, 198, 2860, 47047, 738738, 12828816, 223282488, 4179020274, 80464009340, 1640551617848, 34682405557800, 770529476530814, 17782248154604934, 428864975324828328, 10740325059575465640, 279932748231053890830, 7564798231253861700960, 212075260563875086898520
Offset: 10

Views

Author

Alois P. Heinz, May 01 2016

Keywords

Crossrefs

Column k=10 of A262071.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(10):
    seq(a(n), n=10..30);

Formula

E.g.f.: x^10 * Product_{i=1..10} (i-1)!/(i!-x^i).

A339030 T(n, k) = Sum_{p in P(n, k)} card(p), where P(n, k) is the set of set partitions of {1,2,...,n} where the largest block has size k and card(p) is the number of blocks of p. Triangle T(n, k) for 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 8, 1, 0, 5, 85, 50, 10, 1, 0, 6, 300, 280, 75, 12, 1, 0, 7, 1071, 1540, 525, 105, 14, 1, 0, 8, 3976, 8456, 3570, 840, 140, 16, 1, 0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1
Offset: 0

Views

Author

Peter Luschny, Nov 22 2020

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 2, 1]
3: [0, 3, 6,     1]
4: [0, 4, 24,    8,     1]
5: [0, 5, 85,    50,    10,    1]
6: [0, 6, 300,   280,   75,    12,   1]
7: [0, 7, 1071,  1540,  525,   105,  14,   1]
8: [0, 8, 3976,  8456,  3570,  840,  140,  16,  1]
9: [0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1]
.
T(4,0) = 0  = 0*card({})
T(4,1) = 4  = 4*card({1|2|3|4}).
T(4,2) = 24 = 3*card({12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34})
            + 2*card({12|34, 13|24, 14|23}).
T(4,3) = 8  = 2*card({123|4, 124|3, 134|2, 1|234}).
T(4,4) = 1  = 1*card({1234}).
.
Seen as the projection of a 2-dimensional statistic this is, for n = 6:
[  0   0    0     0     0    0   0]
[  0   0    0     0     0    0   6]
[  0   0    0    45   180   75   0]
[  0   0   20   180    80    0   0]
[  0   0   30    45     0    0   0]
[  0   0   12     0     0    0   0]
[  0   1    0     0     0    0   0]
The row sum projection gives row 6 of this triangle, and the column sum projection gives [0, 1, 62, 270, 260, 75, 6], which appears in a decapitated version as row 5 in A321331.
		

Crossrefs

Cf. A005493 with 1 prepended are the row sums.

Programs

  • SageMath
    def A339030Row(n):
        if n == 0: return [1]
        M = matrix(n + 1)
        for k in (1..n):
            for p in SetPartitions(n):
                if p.max_block_size() == k:
                    M[k, len(p)] += p.cardinality()
        return [sum(M[k, j] for j in (0..n)) for k in (0..n)]
    for n in (0..9): print(A339030Row(n))
Previous Showing 11-14 of 14 results.