cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A262365 A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31
Offset: 1

Views

Author

Alois P. Heinz, Sep 20 2015

Keywords

Examples

			Square array A(n,k) begins:
:  2,  2,  3,  17,  5,  13,   7,  17, ...
:  3,  5,  7,  19, 11,  53,  29,  67, ...
:  5, 11, 13,  37, 23,  97,  31,  71, ...
:  7, 17, 29,  67, 41, 101,  59, 131, ...
: 11, 19, 31,  71, 43, 103,  61, 137, ...
: 13, 23, 53,  73, 47, 107, 113, 139, ...
: 17, 37, 59,  79, 83, 109, 127, 257, ...
: 19, 41, 61, 131, 89, 193, 227, 263, ...
		

Crossrefs

Columns k=1-7 give: A000040, A080165, A080166, A262286, A262284, A262287, A262285.
Row n=1 gives A164022.
Main diagonal gives A262366.

Programs

  • Maple
    u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):
    A:= proc(n, k) local l, p;
          l:= proc() [] end; p:= proc() -1 end;
          while nops(l(k))
    				
  • Mathematica
    nmax = 14;
    col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp];
    A[n_, k_] := col[k][[n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 25 2021 *)

A077345 a(n) is the n-th prime whose decimal expansion begins with the decimal expansion of n.

Original entry on oeis.org

11, 23, 37, 401, 509, 617, 719, 829, 953, 1033, 1171, 1279, 1373, 1483, 15013, 1697, 17021, 18049, 19001, 20051, 21067, 22031, 23027, 24097, 25127, 26107, 27103, 28123, 29153, 30161, 31159, 32189, 33161, 34259, 35171, 36241, 37243, 38299, 39241, 40237, 41263
Offset: 1

Views

Author

Amarnath Murthy, Nov 05 2002

Keywords

Comments

Original name was: Final terms of rows in A077344.
Subsidiary sequence: There can be a rearrangement of primes in groups so that the n-th group contains n primes beginning with n and not occurring earlier. E.g. the initial term of row 11 would be 113 and not 11.

Crossrefs

Cf. A077344.
Main diagonal of A262369.

Programs

  • Maple
    u:= (h, t)-> select(isprime, [seq(h*10^t+k, k=0..10^t-1)]):
    A:= proc(n, k) local l, p;
          l:= proc() [] end; p:= proc() -1 end;
          while nops(l(k)) A(n$2):
    seq(a(n), n=1..45);  # Alois P. Heinz, Sep 30 2015
  • Mathematica
    u[h_, t_] := Select[Table[h*10^t + k, {k, 0, 10^t - 1}], PrimeQ];
    A[n_, k_] := Module[{l, p}, l[] = {}; p[] = -1; While[Length[l[k]] < n, p[k] = p[k] + 1; l[k] = Join[l[k], u[k, p[k]]]]; l[k][[n]]];
    a[n_] := A[n, n];
    Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Oct 25 2021, after Alois P. Heinz *)

Extensions

More terms and new name from Alois P. Heinz, Sep 30 2015

A077344 Triangle in which n-th row contains n smallest primes beginning with n.

Original entry on oeis.org

11, 2, 23, 3, 31, 37, 41, 43, 47, 401, 5, 53, 59, 503, 509, 61, 67, 601, 607, 613, 617, 7, 71, 73, 79, 701, 709, 719, 83, 89, 809, 811, 821, 823, 827, 829, 97, 907, 911, 919, 929, 937, 941, 947, 953, 101, 103, 107, 109, 1009, 1013, 1019, 1021, 1031, 1033
Offset: 1

Views

Author

Amarnath Murthy, Nov 05 2002

Keywords

Examples

			Triangle begins:
:  11;
:   2,  23;
:   3,  31,  37;
:  41,  43,  47, 401;
:   5,  53,  59, 503,  509;
:  61,  67, 601, 607,  613,  617;
:   7,  71,  73,  79,  701,  709,  719;
:  83,  89, 809, 811,  821,  823,  827,  829;
:  97, 907, 911, 919,  929,  937,  941,  947,  953;
: 101, 103, 107, 109, 1009, 1013, 1019, 1021, 1031, 1033;
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Sep 30 2015
Previous Showing 11-13 of 13 results.