cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A378954 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^3/(1 + x*A(x)^2) )^2.

Original entry on oeis.org

1, 2, 11, 82, 705, 6584, 64902, 664608, 7001006, 75378082, 825810304, 9176278104, 103171720299, 1171558985630, 13416903518301, 154784357304138, 1797153050309355, 20984321920535966, 246252819129444579, 2902768234099178002, 34355158795966317996, 408086199665333171952
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=-1, t=6, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies:
(1) A(x) = 1/( 1 - x*A(x)^(5/2)/(1 + x*A(x)^2) )^2.
(2) A(x) = 1 + x * A(x)^2 * (1 + A(x)^(3/2)).
(3) A(x) = B(x)^2 where B(x) is the g.f. of A364765.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A350290 a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n, k) * binomial(n + k - 1, n - k).

Original entry on oeis.org

1, 1, -3, -2, 21, -4, -150, 155, 1029, -2072, -6468, 22056, 34122, -208857, -106249, 1816958, -639067, -14629264, 17635800, 108117620, -239571684, -711876496, 2628772968, 3825823888, -25582846134, -10997156129, 227594431035, -98360217830, -1864646227185
Offset: 0

Views

Author

Peter Luschny, Mar 07 2022

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^(n - k)*binomial(n, k)*binomial(n + k - 1, n-k), k = 0..n):
    seq(a(n), n = 0..28);
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+k-1, n-k)); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = (-1)^(n-1)*n^2*hypergeom([1 - n, 1 - n, n + 1], [3/2, 2], -1/4) for n >= 1.
D-finite with recurrence 4*n*(2*n-1)*(9789*n-26254)*a(n) +2*(28924*n^3-27550*n^2-236727*n+284748)*a(n-1) +2*(342172*n^3-1352012*n^2+1027500*n+356439)*a(n-2) -2*(n-3)*(43143*n^2-783097*n+1918735)*a(n-3) -5*(5116*n-30173)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
Previous Showing 11-12 of 12 results.