cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A262857 Number of ordered ways to write n as w^3 + 2*x^3 + y^2 + 2*z^2, where w, x, y and z are nonnegative integers.

Original entry on oeis.org

1, 2, 3, 4, 4, 3, 3, 2, 3, 5, 5, 6, 6, 3, 4, 1, 4, 6, 7, 10, 7, 5, 4, 2, 5, 8, 8, 9, 9, 6, 6, 2, 6, 10, 8, 13, 9, 6, 7, 5, 5, 8, 6, 9, 10, 6, 9, 4, 5, 9, 6, 13, 10, 7, 11, 6, 8, 10, 8, 10, 12, 9, 9, 7, 8, 13, 10, 16, 12, 6, 12, 8, 10, 13, 12, 13, 12, 8, 11, 7, 10, 16, 15, 17, 16, 6, 11, 7, 12, 16, 11, 16, 9, 10, 5, 6, 10, 15, 17, 18, 16
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 03 2015

Keywords

Comments

Conjecture: We have {a*w^3+b*x^3+c*y^2+d*z^2: w,x,y,z = 0,1,2,...} = {0,1,2,...} if (a,b,c,d) is among the following 63 quadruples:
(1,1,1,2),(1,1,2,4),(1,2,1,1),(1,2,1,2),(1,2,1,3),(1,2,1,4),(1,2,1,6),(1,2,1,13),(1,2,2,3),(1,2,2,4),(1,2,2,5),(1,3,1,1),(1,3,1,2),(1,3,1,3),(1,3,1,5),(1,3,1,6),(1,3,2,3),(1,3,2,4),(1,3,2,5),(1,4,1,1),(1,4,1,2),(1,4,1,3),(1,4,2,2),(1,4,2,3),(1,4,2,5),(1,5,1,1),(1,5,1,2),(1,6,1,1),(1,6,1,3),(1,7,1,2),(1,8,1,2),(1,9,1,2),(1,9,2,4),(1,10,1,2),(1,11,1,2),(1,11,2,4),(1,12,1,2),(1,14,1,2),(1,15,1,2),(2,3,1,1),(2,3,1,2),(2,3,1,3),(2,3,1,4),(2,4,1,1),(2,4,1,2),(2,4,1,6),(2,4,1,8),(2,4,1,10),(2,5,1,3),(2,6,1,1),(2,7,1,3),(2,8,1,1),(2,8,1,4),(2,10,1,1),(2,13,1,1),(3,4,1,2),(3,5,1,2),(3,7,1,2),(3,9,1,2),(4,5,1,2),(4,6,1,2),(4,8,1,2),(4,11,1,2).
Conjecture verified up to 10^11 for all quadruples. - Mauro Fiorentini, Jul 18 2023

Examples

			a(7) = 2 since 7 = 1^3 + 2*0^3 + 2^2 + 2*1^2 = 1^3 + 2*1^3 + 2^2 + 2*0^2.
a(15) = 1 since 15 = 1^3 + 2*1^3 + 2^2 + 2*2^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^3-2y^3-2z^2],r=r+1],{x,0,n^(1/3)},{y,0,((n-x^3)/2)^(1/3)},{z,0,Sqrt[(n-x^3-2y^3)/2]}];Print[n," ",r];Continue,{n,0,100}]

A262824 Number of ordered ways to write n as w^2 + x^3 + 2*y^3 + 3*z^3, where w, x, y and z are nonnegative integers.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 2, 3, 2, 2, 5, 2, 4, 5, 3, 2, 1, 4, 5, 5, 6, 8, 5, 4, 5, 3, 7, 3, 4, 8, 1, 4, 3, 4, 7, 4, 5, 4, 3, 3, 3, 3, 6, 5, 3, 9, 3, 4, 7, 3, 7, 3, 5, 4, 2, 6, 5, 4, 6, 8, 7, 8, 5, 5, 5, 1, 6, 4, 3, 7, 2, 5, 5, 5, 8, 8, 10, 9, 6, 3, 7, 6, 8, 9, 9, 8, 5, 6, 4, 3, 6, 7, 4, 7
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 03 2015

Keywords

Comments

Conjecture: (i) For any m = 3, 4, 5, 6 and n >= 0, there are nonnegative integers w, x, y, z such that n = w^2 + x^3 + 2*y^3 + m*z^3.
(ii) For P(w,x,y,z) = w^2 + x^3 + 2*y^3 + z^4, w^2 + x^3 + 2*y^3 + 3*z^4, w^2 + x^3 + 2*y^3 + 6*z^4, 2*w^2 + x^3 + 4*y^3 + z^4, we have {P(w,x,y,z): w,x,y,z = 0,1,2,...} ={0,1,2,...}.
Conjectures (i) and (ii) verified up to 10^11. - Mauro Fiorentini, Jul 22 2023
See also A262827 and A262857 for similar conjectures.

Examples

			a(0) = 1 since 0 = 0^2 + 0^3 + 2*0^3 + 3*0^3.
a(8) = 2 since 8 = 2^2 + 1^3 + 2*0^3 + 3*1^3 = 0^2 + 2^3 + 2*0^3 + 3*0^3.
a(23) = 1 since 23 = 2^2 + 0^3 + 2*2^3 + 3*1^3.
a(37) = 1 since 37 = 6^2 + 1^3 + 2*0^3 + 3*0^3.
a(72) = 1 since 72 = 8^2 + 2^3 + 2*0^3 + 3*0^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^3-2y^3-3z^3],r=r+1],{x,0,n^(1/3)},{y,0,((n-x^3)/2)^(1/3)},{z,0,((n-x^3-2y^3)/3)^(1/3)}];Print[n," ",r];Continue,{n,1,100}]

A270920 Number of ordered ways to write n as the sum of a positive triangular number, a positive square, and a fifth power whose absolute value does not exceed n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 2, 2, 5, 5, 3, 2, 3, 4, 4, 3, 4, 6, 3, 2, 4, 3, 3, 5, 5, 3, 3, 4, 5, 6, 7, 2, 2, 4, 6, 9, 9, 7, 6, 3, 5, 4, 4, 7, 8, 6, 3, 5, 7, 8, 7, 7, 6, 6, 5, 4, 5, 7, 7, 5, 5, 6, 9, 5, 3, 5, 4, 9, 11, 10, 6, 2, 6, 4, 3, 6, 7, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 25 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 112, 770, 801, 1593, 1826, 2320, 2334, 2849, 7561.
(ii) Let T(x) = x*(x+1)/2 and pen(x) = x*(3x+1)/2. Any natural number n can be written as P(x,y) + z^5, where x, y and z are integers with |z^5| <= n, and the polynomial P(x,y) is either of the following ones: T(x)+2*T(y), T(x)+2*pen(y), x^2+pen(y), x^2+y(5y+1)/2, 2*T(x)+pen(y), pen(x)+pen(y), pen(x)+y(3y+j) (j = 1,2), pen(x)+6*T(y), pen(x)+y(7y+j)/2 (j = 1,3,5), pen(x)+y(4y+j) (j = 1,3), pen(x)+y(5y+j) (j = 1,2,3,4), pen(x)+y(13y+7)/2, x(5x+i)/2+y(3y+j) (i = 1,3; j = 1,2), x(5x+j)/2+y(7y+5)/2 (j = 1,3).

Examples

			a(1) = 1 since 1 = 1*2/2 + 1^2 + (-1)^5 with |(-1)^5| <= 1.
a(112) = 1 since 112 = 10*11/2 + 5^2 + 2^5.
a(770) = 1 since 770 = 28*29/2 + 11^2 + 3^5.
a(801) = 1 since 801 = 45*46/2 + 3^2 + (-3)^5 with |(-3)^5| < 801.
a(1593) = 1 since 1593 = 49*50/2 + 20^2 + (-2)^5 with |(-2)^5| < 1593.
a(1826) = 1 since 1826 = 55*56/2 + 23^2 + (-3)^5 with |(-3)^5| < 1826.
a(2320) = 1 since 2320 = 5*6/2 + 48^2 + 1^5.
a(2334) = 1 since 2334 = 11*12/2 + 45^2 + 3^5.
a(2849) = 1 since 2849 = 70*71/2 + 11^2 + 3^5.
a(7561) = 1 since 7561 = 97*98/2 + 53^2 + (-1)^5 with |(-1)^5| < 7561.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[TQ[n-(-1)^k*x^5-y^2],r=r+1],{k,0,1},{x,0,n^(1/5)},{y,1,Sqrt[n-(-1)^k*x^5]}];Print[n," ",r];Continue,{n,1,80}]

A266968 Number of ordered ways to write n as x^5+y^4+z^3+w*(w+1)/2, where x, y, z and w are nonnegative integers with z > 0 and w > 0.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 1, 1, 2, 2, 2, 3, 4, 2, 1, 2, 2, 2, 3, 3, 2, 1, 1, 4, 4, 2, 1, 2, 3, 4, 7, 5, 2, 2, 4, 3, 2, 5, 6, 5, 2, 1, 2, 4, 5, 5, 6, 4, 3, 4, 4, 1, 2, 4, 5, 5, 4, 4, 2, 3, 2, 4, 5, 4, 6, 5, 4, 3, 5, 6, 5, 4, 4, 3, 4, 5, 4, 3, 2, 5, 7
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 28 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 6, 7, 14, 21, 22, 26, 41, 51, 184, 189, 206, 225, 229, 526, 708.
(ii) Any natural number can be written as 2*x^5 + y^4 + z^3 + w*(w+1)/2 with x,y,z,w nonnegative integers. Also, each natural number can be written as x^5 + 2*y^4 + z^3 + w*(w+1)/2 with x,y,z,w nonnegative integers.
(iii) For each d = 1,2, every natural number can be written as x^5 + y^4 + z^3 + w*(3w+1)/d with x,y,z nonnegative integers and w an integer.
(iv) Any natural number can be written as x^4 + y^4 + z^3 + w*(3w+1)/2 with x,y,z nonnegative integers and w an integer.
Also, for each P(w) = w(3w+1)/2, w(7w+3)/2, we can write any natural number as x^4 + y^3 + z^3 + P(w) with x,y,z nonnegative integers and w an integer.
(v) Any natural number can be written as the sum of a nonnegative cube and three pentagonal numbers. Also, every n = 0,1,2,... can be expressed as the sum of two nonnegative cubes and two pentagonal numbers.
We have verified that a(n) > 1 for all n = 2..3*10^6.
Compare this conjecture with the conjectures in A262813, A262827, A270559 and A271026.

Examples

			a(2) = 1 since 2 = 0^5 + 0^4 + 1^3 + 1*2/2.
a(6) = 1 since 6 = 1^5 + 1^4 + 1^3 + 2*3/2.
a(7) = 1 since 7 = 0^5 + 0^4 + 1^3 + 3*4/2.
a(14) = 1 since 14 = 0^5 + 0^4 + 2^3 + 3*4/2.
a(21) = 1 since 21 = 1^5 + 2^4 + 1^3 + 2*3/2.
a(22) = 1 since 22 = 0^5 + 0^4 + 1^3 + 6*7/2.
a(26) = 1 since 26 = 1^5 + 2^4 + 2^3 + 1*2/2.
a(41) = 1 since 41 = 2^5 + 0^4 + 2^3 + 1*2/2.
a(51) = 1 since 51 = 2^5 + 1^4 + 2^3 + 4*5/2.
a(184) = 1 since 184 = 0^5 + 0^4 + 4^3 + 15*16/2.
a(189) = 1 since 189 = 1^5 + 2^4 + 1^3 + 18*19/2.
a(206) = 1 since 206 = 2^5 + 3^4 + 3^3 + 11*12/2.
a(225) = 1 since 225 = 0^5 + 3^4 + 2^3 + 16*17/2.
a(229) = 1 since 229 = 1^5 + 3^4 + 3^3 + 15*16/2.
a(526) = 1 since 526 = 3^5 + 1^4 + 6^3 + 11*12/2.
a(708) = 1 since 708 = 1^5 + 5^4 + 3^3 + 10*11/2.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[TQ[n-x^5-y^4-z^3],r=r+1],{x,0,n^(1/5)},{y,0,(n-x^5)^(1/4)},{z,1,(n-x^5-y^4)^(1/3)}];Print[n," ",r];Continue,{n,0,80}]

A270594 Number of ordered ways to write n as the sum of a triangular number, a positive square and the square of a generalized pentagonal number (A001318).

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 2, 4, 2, 3, 5, 2, 2, 3, 3, 4, 3, 2, 4, 5, 1, 2, 5, 1, 3, 7, 3, 2, 6, 5, 3, 6, 2, 2, 5, 4, 6, 4, 3, 5, 8, 2, 2, 6, 2, 5, 5, 1, 4, 9, 5, 3, 8, 5, 4, 8, 4, 3, 5, 5, 5, 6, 3, 6, 11, 2, 3, 9, 2, 5, 12, 2, 2, 9, 6, 3, 4, 4, 5, 6, 6, 6, 5, 5, 6, 11, 2, 4, 8, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 19 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 21, 24, 48, 90, 138, 213, 283, 462, 468, 567, 573, 1998, 2068, 2488, 2687, 5208, 5547, 5638, 6093, 6492, 6548, 6717, 7538, 7731, 8522, 14763, 16222, 17143, 24958, 26148.
(ii) Let T(x) = x(x+1)/2, pen(x) = x(3x+1)/2 and hep(x) = x(5x+3)/2. Then any natural number can be written as P(x,y,z) with x, y and z integers, where P(x,y,z) is either of the following polynomials: T(x)^2+T(y)+z(5z+1)/2, T(x)^2+T(y)+z(3z+j) (j = 1,2), T(x)^2+y^2+pen(z), T(x)^2+pen(y)+hep(z), T(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), T(x)^2+pen(y)+z(4z+j) (j = 1,3), T(x)^2+pen(y)+z(5z+j) (j = 1,3,4), T(x)^2+pen(y)+z(11z+7)/2, T(x)^2+y(5y+1)/2+z(3z+2), T(x)^2+hep(y)+z(3z+2), pen(x)^2+T(y)+pen(z), pen(x)^2+T(y)+2*pen(z), pen(x)^2+T(y)+z(9z+7)/2, pen(x)^2+y^2+pen(z), pen(x)^2+2*T(y)+pen(z), pen(x)^2+pen(y)+3*T(z), pen(x)^2+pen(y)+2z^2, pen(x)^2+pen(y)+2*pen(z), pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), pen(x)^2+pen(y)+z(4z+3), pen(x)^2+pen(y)+z(9z+1)/2, pen(x)^2+pen(y)+3*pen(z), pen(x)^2+pen(y)+z(5z+j) (j = 1,2,3,4), pen(x)^2+pen(y)+z(11z+j)/2 (j = 7,9), pen(x)^2+pen(y)+z(7z+1), pen(x)^2+pen(y)+3*hep(z), pen(x)^2+y(5y+j)/2+z(3z+k) (j = 1,3; k = 1,2), pen(x)^2+hep(y)+z(7z+j)/2 (j = 1,3,5), pen(x)^2+hep(y)+z(9z+5)/2, pen(y)^2+2pen(y)+z(3z+2), pen(x)^2+2*pen(y)+3*pen(z), (x(5x+1)/2)^2+2*T(y)+pen(z), (x(5x+1)/2)^2+pen(y)+z(7z+3)/2, (x(5x+1)/2)^2+pen(y)+z(4z+1), (x(5x+1)/2)^2+hep(y)+2*pen(z), hep(x)^2+T(y)+2*pen(z), hep(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), hep(x)^2+pen(y)+z(4z+1), hep(x)^2+pen(y)+z(5z+4), 4*pen(x)^2+T(y)+hep(z), 4*pen(x)^2+T(y)+2*pen(z), 4*pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), (x(3x+2))^2+y^2+pen(z), (x(3x+2))^2+pen(y)+z(7z+j)/2 (j = 3,5), 2*T(x)^2+T(y)+z(3z+j) (j = 1,2), 2*T(x)^2+y^2+pen(z), 2*T(x)^2+2*T(y)+pen(z), 2*T(x)^2+pen(y)+z(7z+j)/2 (j = 1,5), 2*T(x)^2+pen(y)+z(5z+1), 2*pen(y)^2+T(y)+z(3z+2), 2*pen(x)^2+y^2+pen(z), 2*pen(x)^2+pen(y)+z(7z+3)/2, 2*pen(x)^2+pen(y)+z(4z+j) (j = 1,3), 2*pen(x)^2+pen(y)+z(5z+4), 2*pen(x)^2+pen(y)+z(7z+1), 2*pen(x)^2+hep(y)+2*pen(z), 2*hep(x)^2+pen(y)+z(7z+5)/2, 3*pen(x)^2+T(y)+z(3z+2), 3*pen(x)^2+y^2+pen(z), 3*pen(x)^2+2*T(y)+pen(z), 3*pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), 3*pen(x)^2+pen(y)+z(4z+1), 6*pen(x)^2+pen(y)+z(7z+3)/2.
See also A270566 for a similar conjecture involving four powers.
It is known that any positive integer can be written as the sum of a triangular number, a square and an odd square.

Examples

			a(21) = 1 since 21 = 1*2/2 + 4^2 + (1*(3*1+1)/2)^2.
a(24) = 1 since 24 = 5*6/2 + 3^2 + (0*(3*0-1)/2)^2.
a(468) = 1 since 468 = 0*1/2 + 18^2 + (3*(3*3-1)/2)^2.
a(7538) = 1 since 7538 = 64*65/2 + 47^2 + (6*(3*6+1)/2)^2.
a(7731) = 1 since 7731 = 82*83/2 + 62^2 + (4*(3*4-1)/2)^2.
a(8522) = 1 since 8522 = 127*128/2 + 13^2 + (3*(3*3+1)/2)^2.
a(14763) = 1 since 14763 = 164*165/2 + 33^2 + (3*(3*3-1)/2)^2.
a(16222) = 1 since 16222 = 168*169/2 + 45^2 + (1*(3*1-1)/2)^2.
a(17143) = 1 since 17143 = 182*183/2 + 21^2 + (2*(3*2+1)/2)^2.
a(24958) = 1 since 24958 = 216*217/2 + 39^2 + (1*(3*1-1)/2)^2.
a(26148) = 1 since 26148 = 10*11/2 + 142^2 + (7*(3*7+1)/2)^2.
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[n]&&IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[Sqrt[n-x^2-y(y+1)/2]],r=r+1],{x,1,Sqrt[n]},{y,0,(Sqrt[8(n-x^2)+1]-1)/2}];Print[n," ",r];Continue,{n,1,90}]

A271026 Number of ordered ways to write n as x^7 + y^4 + z^3 + w*(3w+1)/2, where x, y, z are nonnegative integers, and w is an integer.

Original entry on oeis.org

1, 4, 7, 7, 4, 2, 3, 4, 5, 6, 5, 3, 2, 4, 5, 4, 6, 7, 5, 3, 2, 3, 4, 6, 8, 5, 3, 5, 7, 8, 6, 5, 5, 3, 3, 5, 6, 4, 2, 4, 5, 4, 5, 7, 6, 3, 2, 1, 2, 4, 5, 5, 5, 5, 3, 2, 2, 3, 5, 6, 4, 1, 1, 2, 3, 6, 7, 6, 5, 4, 4, 5, 5, 3, 2, 2, 2, 3, 7, 9, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 29 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 47, 61, 62, 112, 175, 448, 573, 714, 1073, 1175, 1839, 2167, 8043, 13844.
(ii) Any natural number can be written as 3*x^6 + y^4 + z^3 + w*(3w+1)/2, where x, y, z are nonnegative integers and w is an integer.
(iii) For every a = 3, 4, 5, 9, 12, any natural number can be written as a*x^5 + y^4 + z^3 + w*(3w+1)/2, where x, y, z are nonnegative integers and w is an integer. Also, any natural number can be written as x^5 + 2*y^4 + 2*z^3 + w*(3w+1)/2 (or 3*x^5 + 2*y^4 + z^3 + w*(3w+1)/2), where x, y, z are nonnegative integers and w is an integer.
We have verified that a(n) > 0 for n up to 2*10^6.
See also A266968 for a related conjecture.

Examples

			a(47) = 1 since 47 = 1^7 + 2^4 + 2^3 + (-4)*(3*(-4)+1)/2.
a(61) = 1 since 61 = 1^7 + 1^4 + 2^3 + (-6)*(3*(-6)+1)/2.
a(62) = 1 since 62 = 0^7 + 0^4 + 3^3 + (-5)*(3*(-5)+1)/2.
a(112) = 1 since 112 = 1^7 + 3^4 + 2^3 + (-4)*(3*(-4)+1)/2.
a(175) = 1 since 175 = 1^7 + 3^4 + 1^3 + (-8)*(3*(-8)+1)/2.
a(448) = 1 since 448 = 2^7 + 4^4 + 4^3 + 0*(3*0+1)/2.
a(573) = 1 since 573 = 1^7 + 4^4 + 6^3 + 8*(3*8+1)/2.
a(714) = 1 since 714 = 2^7 + 4^4 + 0^3 + (-15)*(3*(-15)+1)/2.
a(1073) = 1 since 1073 = 0^7 + 2^4 + 10^3 + 6*(3*6+1)/2.
a(1175) = 1 since 1175 = 0^7 + 5^4 + 5^3 + (-17)*(3*(-17)+1)/2.
a(1839) = 1 since 1839 = 1^7 + 4^4 + 5^3 + 31*(3*31+1)/2.
a(2167) = 1 since 2167 = 1^7 + 5^4 + 11^3 + (-12)*(3*(-12)+1)/2.
a(8043) = 1 since 8043 = 1^7 + 2^4 + 20^3 + 4*(3*4+1)/2.
a(13844) = 1 since 13844 = 3^7 + 2^4 + 21^3 + (-40)*(3*(-40)+1)/2.
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[n-x^7-y^4-z^3],r=r+1],{x,0,n^(1/7)},{y,0,(n-x^7)^(1/4)},{z,0,(n-x^7-y^4)^(1/3)}];Print[n," ",r];Continue,{n,0,80}]

A271325 Number of ordered ways to write n as x^3 + y^2 + z*(3z+1), where x, y and z are integers with x positive and y nonnegative.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 4, 1, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 1, 4, 3, 3, 2, 2, 5, 3, 3, 2, 3, 3, 3, 4, 2, 3, 5, 2, 2, 1, 3, 3, 5, 2, 1, 3, 2, 4, 3, 6, 1, 3, 5, 2, 1, 3, 6, 2, 2, 3, 3, 3, 6, 4, 4, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 04 2016

Keywords

Comments

We guess that a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 2, 3, 4, 6, 7, 8, 13, 18, 20, 23, 25, 44, 49, 55, 59, 121, 238.
Based on our computation, we propose the following general conjecture (which extends the conjectures in A262813 and A270469).
Conjecture: Let T(x) = x*(x+1)/2 and pen(x) = x*(3x+1)/2. Every natural number can be written as P(x,y,z) with x a nonnegative integer and y and z integers, where P(x,y,z) is any of the following cubic polynomials: x^3+T(y)+z^2, a*x^3+T(y)+pen(z) (a = 1,2,3,4), x^3+T(y)+z*(5z+1)/2, x^3+T(y)+z*(3z+r) (r = 1,2), x^3+T(y)+z*(7z+3)/2, x^3+T(y)+z*(9z+j)/2 (j = 5,7), x^3+T(y)+z*(5z+r) (r = 2,3), x^3+T(y)+2z*(3z+r) (r = 1,2), x^3+T(y)+z*(6z+5), x^3+T(y)+z*(13z+j)/2 (j = 3,7,9), x^3+T(y)+z*(7z+k) (k = 2,6), a*x^3+y^2+pen(z) (a = 1,2,3,4), x^3+y^2+z*(5z+3)/2, x^3+y^2+2*pen(z), x^3+2*T(y)+pen(z), x^3+2*T(y)+z(5z+j)/2 (j = 1,3), a*x^3+2*T(y)+z*(3z+2) (a = 1,2,3), x^3+2*T(y)+z*(7z+3)/2, x^3+4*T(y)+pen(z), x^3+2y^2+pen(z), x^3+pen(y)+c*pen(z) (c = 1,2,3,4), x^3+b*pen(y)+z*(5z+j)/2 (b = 1,2; j = 1,3), x^3+pen(y)+z*(7z+k)/2 (k = 1,3,5), x^3+pen(y)+z*(4z+j) (j = 1,3), x^3+pen(y)+z*(9z+5)/2, a*x^3+pen(y)+z*(9z+r)/2 (a = 1,2; r = 1,7), x^3+pen(y)+z*(5z+r) (r = 1,2,3,4), a*x^3+pen(y)+z*(11z+9)/2 (a = 1,2), x^3+pen(y)+2z*(3z+2),x^3+pen(y)+z*(13z+11)/2, x^3+pen(y)+z*(7z+k) (k = 4,5,6), x^3+pen(y)+3z*(5z+3)/2, x^3+pen(y)+z*(15z+11)/2, x^3+pen(y)+z*(8z+7), x^3+pen(y)+z*(11z+7), x^3+2*pen(y)+z*(7z+j)/2 (j = 1,5), x^3+2*pen(y)+3*pen(z), x^3+2*pen(y)+z*(4z+1), x^3+2*pen(y)+z*(7z+2), x^3+y*(5y+j)/2+z*(7z+k)/2 (j = 1,3; k = 3,5), x^3+y*(5y+3)/2+z*(9z+7)/2, x^3+y*(3y+2)+z*(4z+1), x^3+y*(3y+2)+z*(5z+1)/2, x^3+y*(7y+3)/2+z*(7z+5)/2, 2x^3+T(y)+z*(5z+3)/2, 2x^3+T(y)+z*(3z+r) (r = 1,2), 2x^3+T(y)+z*(5z+4), 2x^3+2*T(y)+z*(5z+3)/2, 2x^3+3*T(y)+pen(z), 2x^3+y^2+2*pen(z), 2x^3+pen(y)+pen(z), a*x^3+pen(y)+3*pen(z) (a = 2,3,4), a*x^3+pen(y)+z*(7z+5)/2 (a = 2,3,4), 2x^3+pen(y)+z*(5z+k) (k = 1,3), 2x^3+y*(5y+3)/2+z*(7z+5)/2, 2x^3+2*pen(y)+z*(3z+2), 2x^3+2*pen(y)+z*(7z+5)/2, 2x^3+y*(3y+2)+z*(4z+3), 3x^3+pen(y)+z*(7z+3)/2, 4x^3+y^2+z*(5z+1)/2, 4x^3+pen(y)+z*(4z+3).
The listed ternary polynomials in the conjecture should exhaust all those P(x,y,z) = a*x^3+y*(s*y+t)/2+z*(u*z+v)/2 with a,s,u > 0, 0 <= t <= s, 0 <= v <= u, s == t (mod 2), u == v (mod 2), and (s-2t)*(u-2v) nonzero, such that any natural number can be written as P(x,y,z) with x a nonnegative integer and y and z integers. Note that those numbers y*(2y+1) with y integral are just triangular numbers.
Conjecture verified for all polynomials up to 10^11. - Mauro Fiorentini, Aug 03 2023
See also A271106 for another general conjecture on universal sums.

Examples

			a(13) = 1 since 13 = 2^3 + 1^2 + 1*(3*1+1).
a(18) = 1 since 18 = 2^3 + 0^2 + (-2)*(3*(-2)+1).
a(20) = 1 since 20 = 1^3 + 3^2 + (-2)*(3*(-2)+1).
a(23) = 1 since 23 = 2^3 + 1^2 + 2*(3*2+1).
a(25) = 1 since 25 = 1^3 + 0^2 + (-3)*(3*(-3)+1).
a(44) = 1 since 44 = 2^3 + 6^2 + 0*(3*0+1).
a(49) = 1 since 49 = 1^3 + 2^2 + (-4)*(3*(-4)+1).
a(55) = 1 since 55 = 3^3+ 2^2 + (-3)*(3*(-3)+1).
a(59) = 1 since 59 = 2^3 + 7^2 + (-1)*(3*(-1)+1).
a(121) = 1 since 121 = 3^3 + 8^2 + 3*(3*3+1).
a(238) = 1 since 238 = 4^3 + 12^2 + 3*(3*3+1).
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[12n+1]]
    Do[r=0;Do[If[pQ[n-x^3-y^2],r=r+1],{x,1,n^(1/3)},{y,0,Sqrt[n-x^3]}];Print[n," ",r];Label[aa];Continue,{n,1,70}]

A270616 Number of ordered ways to write n as the sum of a positive square, the square of a triangular number, and a generalized pentagonal number (A001318).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 1, 3, 4, 4, 3, 2, 3, 3, 4, 6, 4, 3, 3, 2, 3, 3, 3, 6, 4, 5, 4, 1, 4, 4, 5, 2, 1, 3, 5, 6, 5, 6, 5, 5, 5, 2, 5, 6, 3, 5, 3, 5, 6, 6, 10, 4, 2, 3, 4, 5, 4, 5, 7, 6, 5, 4, 4, 6, 6, 7, 2, 3, 3, 6, 6, 5, 6, 5, 6, 5, 3, 4, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 20 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 8, 29, 34, 5949, 10913.
See also A270566 and A270594 for more similar conjectures.
By the author's work in Sci. China Math. 58(2015), any natural number can be written as the sum of a triangular number, a square and a generalized pentagonal number.

Examples

			a(1) = 1 since 1 = 1^2 + (0*1/2)^2 + 0*(3*0+1)/2.
a(8) = 1 since 8 = 1^2 + (0*1/2)^2 + 2*(3*2+1)/2.
a(29) = 1 since 29 = 4^2 + (1*2/2)^2 + 3*(3*3-1)/2.
a(34) = 1 since 34 = 5^2 + (2*3/2)^2 + 0*(3*0+1)/2.
a(5949) = 1 since 5949 = 47^2 + (10*11/2)^2 + 22*(3*22-1)/2.
a(10913) = 1 since 10913 = 23^2 + (2*3/2)^2 +83*(3*83+1)/2.
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[n-x^2-(y(y+1)/2)^2],r=r+1],{x,1,Sqrt[n]},{y,0,(Sqrt[8*Sqrt[n-x^2]+1]-1)/2}];Print[n," ",r];Continue,{n,1,80}]

A270705 Number of ordered ways to write n as x^2*pen(x) + pen(y) + pen(z) with pen(x) = x*(3x+1)/2 and pen(y) <= pen(z), where x, y and z are integers ("pen" stands for "pentagonal").

Original entry on oeis.org

1, 2, 5, 5, 6, 4, 3, 4, 4, 4, 3, 2, 3, 3, 6, 4, 4, 4, 3, 3, 3, 4, 6, 5, 6, 5, 5, 8, 8, 9, 7, 5, 7, 6, 7, 9, 7, 10, 5, 5, 9, 6, 12, 7, 8, 6, 3, 10, 6, 5, 7, 5, 8, 7, 8, 9, 5, 9, 8, 7, 5, 7, 7, 5, 6, 6, 5, 4, 6, 4, 8, 5, 9, 6, 3, 7, 5, 8, 8, 8, 8, 6, 6, 6, 6, 6, 8, 3, 1, 4, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 21 2016

Keywords

Comments

Conjecture: (i) Any natural number can be written as a*x^2*pen(x) + b*pen(y) + c*pen(z) with x, y and z integers, provided that (a,b,c) is among the following ordered triples: (j,1,k) (j = 1,2; k = 1,2,3,4), (1,2,3), (3,1,4) and (4,1,3).
(ii) Every n = 0,1,2,... can be expressed as x^2*pen(x) + T(y) + T(z) with x, y and z integers, where T(m) denotes the triangular number m*(m+1)/2. Also, for each (a,b) = (1,2),(1,4),(2,2), any natural number can be written as a*x^2*T(x) + b*T(y) + T(z) with x, y and z integers.
(iii) Each natural number can be written as x^2*P(x) + pen(y) + pen(z) with x, y and z integers, where P(x) is either of the following polynomials: a*T(x) (a = 1,2,3,4,5), x*(5x+3)/2, x*(3x+1), x*(3x+2), x*(7x+1)/2, x*(4x+1), x*(4x+3), x*(9x+5)/2, x*(5x+3), x*(11x+9)/2, x*(13x+5)/2, x*(17x+9)/2, 3x*(3x+2), x*(11x+2).
See also A270594 and A270706 for other similar conjectures.

Examples

			a(88) = 1 since 88 = 1^2*pen(1) + pen(-5) + pen(-6).
		

Crossrefs

Programs

  • Mathematica
    pen[x_]:=pen[x]=x(3x+1)/2
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[n-pen[y]-x^2*pen[x]],r=r+1],{y,-Floor[(Sqrt[12n+1]+1)/6],(Sqrt[12n+1]-1)/6},{x,-1-Floor[(2(n-pen[y])/3)^(1/4)],(2(n-pen[y])/3)^(1/4)}];Print[n," ",r];Continue,{n,0,90}]

A270706 Number of ordered ways to write n as x^2*T(x) + y^2 + T(z), where x, y and z are integers with x nonzero, y positive and z nonnegative, and T(m) denotes the triangular number m*(m+1)/2.

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 2, 4, 2, 3, 5, 2, 3, 4, 3, 6, 4, 2, 6, 5, 2, 4, 6, 2, 3, 7, 3, 5, 6, 4, 8, 5, 2, 5, 3, 5, 9, 7, 3, 5, 8, 3, 6, 5, 2, 8, 4, 2, 9, 6, 4, 7, 7, 4, 5, 7, 5, 9, 5, 3, 7, 4, 5, 12, 9, 4, 5, 8, 4, 6, 11, 3, 9, 5, 3, 10, 3, 4, 9, 6, 5, 11, 8, 5, 7, 9, 3, 5, 4, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 21 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 90, 438, 480, 7108.
(ii) Let pen(x) = x*(3x+1)/2. Any natural number can be written as a*f(x)*g(x) + f(y) + g(z) with x, y and z integers, whenever (a,f(x),g(x)) is among the following ordered triples: (1,T(x),x^2), (1,T(x),pen(x)), (1,T(x),x*(5x+1)/2), (1,T(x),x*(5x+3)/2), (1,T(x),x*(3x+j)) (j = 1,2), (1,pen(x),3*T(x)), (1,pen(x),x*(7x+j)/2) (j = 1,3,5), (1,pen(x),x*(4x+1)), (2,T(x),x^2), (2,T(x),pen(x)), (2,T(x),x(5x+j)/2) (j = 1,3), (2,T(x),x*(3x+j)) (j = 1,2), (2,2*T(x),pen(x)), (2,pen(x),x(7x+j)/2) (j = 3,5), (k,x^2,pen(x)) (k = 1,2,3,4,5,8,11).
(iii) Each natural number can be written as P(x,y,z) with x, y and z integers, where P(x,y,z) is either of the following polynomials: T(x)*x(5x+1)/2+T(y)+2*T(z), a*T(x)*pen(x)+pen(y)+pen(z) (a = 1,2,3,4), T(x)*pen(x)+pen(y)+3*pen(z), T(x)*pen(x)+pen(y)+4*pen(z), 2*T(x)*pen(x)+pen(y)+3*pen(z), pen(x)*x(5x+j)/2+pen(y)+3*pen(z) (j = 1,3), x(3x+2)*pen(x)+pen(y)+4*pen(z), pen(x)*x(7x+1)/2+pen(y)+pen(z), pen(x)*x(9x+7)/2+pen(y)+pen(z).
See also A270594 and A270705 for some other similar conjectures.

Examples

			a(1) = 1 since 1 = (-1)^2*T(-1) + 1^2 + T(0).
a(3) = 1 since 3 = 1^2*T(1) + 1^2 + T(1).
a(90) = 1 since 90 = 3^2*T(3) + 6^2 + T(0).
a(438) = 1 since 438 = 4^2*T(4) + 5^2 + T(22).
a(480) = 1 since 480 = 1^2*T(1) + 17^2 + T(19).
a(7108) = 1 since 1^2*T(1) + 69^2 + T(68).
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[x!=0&&TQ[n-y^2-x^3*(x+1)/2],r=r+1],{y,1,Sqrt[n]},{x,-1-Floor[(2(n-y^2))^(1/4)],(2(n-y^2))^(1/4)}];Print[n," ",r];Continue,{n,1,90}]
Previous Showing 11-20 of 23 results. Next