cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A263160 Number of lattice paths starting at {n}^n and ending when n or any component equals 0 and using steps that decrement one or more components by one.

Original entry on oeis.org

1, 1, 13, 5419, 328504401, 7622403922836151, 125076804896889941384267749, 2283244029676857615289372083169016508547, 66656513992169790340795231563272399566454175106315563265, 4218602489837041203989313097616905233039652652837921715487541815010092122991
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Main diagonal of A263159.

Formula

a(n) = A263159(n,n).

Extensions

a(11)-a(12) in b-file from Vaclav Kotesovec, Dec 02 2016

A263162 Number of lattice paths starting at {n}^4 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 15, 2101, 717795, 328504401, 172924236255, 98788351385893, 59547100211425779, 37279994808479614465, 24006888102075722880975, 15800133137207909144690421, 10580854797781352259168325347, 7186571606168294602440625922385, 4938826696886704892539811529645855
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=4 of A263159.
Cf. A263064.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..4], n=17..31):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$4]):
    seq(a(n), n=0..16);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 4]], {n, 2^4 + 1, 2^5 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {4}]];
    a /@ Range[0, 16] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / (Pi^(3/2) * n^(3/2)), where d = 195 + 138*sqrt(2) + 4*sqrt(4756 + 3363*sqrt(2)) = 780.279406806795145659... and c = sqrt(112232 - 176706*sqrt(2) + sqrt(-24823369828 + 32297875299*sqrt(2)))/2744 = 0.02991158822483794318293134... . - Vaclav Kotesovec, Nov 28 2016

A263163 Number of lattice paths starting at {n}^5 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 31, 32461, 142090291, 944362553521, 7622403922836151, 68836844233002312181, 668865316589763487491811, 6842570537592835194176298241, 72725938463068824904583496062671, 796079042828286992045143086504942301, 8920612967950147759634381671622287341331
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=5 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..5], n=33..63):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$5]):
    seq(a(n), n=0..12);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 5]], {n, 2^5 + 1, 2^6 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {5}]];
    a /@ Range[0, 12] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

A263164 Number of lattice paths starting at {n}^6 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 63, 580693, 39991899123, 4727954015135121, 716137204351882049583, 125076804896889941384267749, 23963247580553153291287896467139, 4899254403362236213345570748744318209, 1051032705565051909388116876876306460192223
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=6 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..6], n=65..127):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$6]):
    seq(a(n), n=0..10);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 6]], {n, 2^6 + 1, 2^7 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {6}]];
    a /@ Range[0, 10] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

A263165 Number of lattice paths starting at {n}^7 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 127, 11917837, 15302345348179, 38074918201135688881, 127994492508527577494290807, 511210318493877135287739912958933, 2283244029676857615289372083169016508547, 11029283913008516141643899112236047179180872449
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=7 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..7], n=129..255):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$7]):
    seq(a(n), n=0..9);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 7]], {n, 2^7 + 1, 2^8 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {7}]];
    a /@ Range[0, 9] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

A263166 Number of lattice paths starting at {n}^8 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 255, 277284181, 7671206130046515, 463841686707958609540881, 39946850792952097272345707272335, 4211153593189257990239568354710957472133, 506051495006579137756029271328016744207715324419, 66656513992169790340795231563272399566454175106315563265
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=8 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..8], n=257..511):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$8]):
    seq(a(n), n=0..8);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 8]], {n, 2^8 + 1, 2^9 - 1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {8}]];
    a /@ Range[0, 8] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

A263167 Number of lattice paths starting at {n}^9 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 511, 7229006221, 4888774762356549331, 8144781718207791515101819441, 20371729407721971932197861769050382551, 64254115995388375135778208276014009097192012661, 235485313707274694851291521951126742198585792399471283971
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=9 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..9], n=513..1023):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$9]):
    seq(a(n), n=0..7);
  • Mathematica
    g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 9]], {n, 2^9+1, 2^10-1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
    a[n_] := b[Table[n, {9}]];
    a /@ Range[0, 7] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)

A263168 Number of lattice paths starting at {n}^10 and ending when any component equals 0, using steps that decrement one or more components by one.

Original entry on oeis.org

1, 1023, 208994018773, 3864094036317649535283, 198305312034897003898098826655121, 16102861078300336871094550725929002523470383, 1698612808615154132767781717350125427082238529142835109, 212216707280526234296212923289763064481087995125148762713351022339
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Crossrefs

Column k=10 of A263159.

Programs

  • Maple
    g():= seq(convert(n, base, 2)[1..10], n=1025..2047):
    b:= proc(l) option remember;
          `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
        end:
    a:= n-> b([n$10]):
    seq(a(n), n=0..5);
Previous Showing 11-18 of 18 results.