A161010
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 14.
Original entry on oeis.org
1, 8191, 797161, 33550336, 305175781, 6529545751, 16148168401, 137422176256, 423644039001, 2499694822171, 3452271214393, 26745019396096, 25239592216021, 132269647372591, 243274230757741, 562881233944576, 619036127056621
Offset: 1
- Álvar Ibeas, Table of n, a(n) for n = 1..10000
- Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
- Index to Jordan function ratios J_k/J_1.
-
f:= proc(n) local t; mul(t[1]^(12*t[2]-12)*(t[1]^13-1)/(t[1]-1), t = ifactors(n)[2]) end proc:
seq(f(n),n=1..100); # Robert Israel, Dec 08 2015
-
b = 14; Table[Sum[MoebiusMu[n/d] d^(b - 1), {d, Divisors@ n}]/EulerPhi@ n, {n, 17}] (* Michael De Vlieger, Nov 27 2015 *)
f[p_, e_] := p^(12*e - 12) * (p^13-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
-
vector(100, n, sumdiv(n^12, d, if(ispower(d, 13), moebius(sqrtnint(d, 13))*sigma(n^12/d), 0))) \\ Altug Alkan, Nov 26 2015
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^13 - 1)*f[i,1]^(12*f[i,2] - 12)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022
A161025
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 15.
Original entry on oeis.org
1, 16383, 2391484, 134209536, 1525878906, 39179682372, 113037178808, 1099444518912, 3812797945332, 24998474116998, 37974983358324, 320959957991424, 328114698808274, 1851888100411464, 3649114989636504
Offset: 1
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
- Index to Jordan function ratios J_k/J_1.
-
A161025 := proc(n)
add(numtheory[mobius](n/d)*d^14,d=numtheory[divisors](n)) ;
%/numtheory[phi](n) ;
end proc:
for n from 1 to 5000 do
printf("%d %d\n",n,A161025(n)) ;
end do: # R. J. Mathar, Mar 15 2016
-
A161025[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(15-1)/EulerPhi[n]&]
f[p_, e_] := p^(13*e - 13) * (p^14-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
-
vector(100, n, sumdiv(n^13, d, if(ispower(d, 14), moebius(sqrtnint(d, 14))*sigma(n^13/d), 0))) \\ Altug Alkan, Nov 26 2015
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^14 - 1)*f[i,1]^(13*f[i,2] - 13)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022
A161139
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 16.
Original entry on oeis.org
1, 32767, 7174453, 536854528, 7629394531, 235085301451, 791260251657, 8795824586752, 34315186290957, 249992370597277, 417724816941565, 3851637578973184, 4265491084507563, 25927224666044919, 54736732481116543
Offset: 1
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
- Index to Jordan function ratios J_k/J_1.
-
A161139 := proc(n)
add(numtheory[mobius](n/d)*d^15,d=numtheory[divisors](n)) ;
%/numtheory[phi](n) ;
end proc:
for n from 1 to 5000 do
printf("%d %d\n",n,A161139(n)) ;
end do: # R. J. Mathar, Mar 15 2016
-
A161139[n_] := DivisorSum[n, MoebiusMu[n/#]*#^(16 - 1)/EulerPhi[n] &]; Array[A161139,20] (* Enrique Pérez Herrero, Mar 02 2011 *)
f[p_, e_] := p^(14*e - 14) * (p^15-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
-
vector(100, n, sumdiv(n^14, d, if(ispower(d, 15), moebius(sqrtnint(d, 15))*sigma(n^14/d), 0))) \\ Altug Alkan, Nov 26 2015
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^15 - 1)*f[i,1]^(14*f[i,2] - 14)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022
A161167
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 17.
Original entry on oeis.org
1, 65535, 21523360, 2147450880, 38146972656, 1410533397600, 5538821761600, 70367670435840, 308836690967520, 2499961853010960, 4594972986357216, 46220358372556800, 55451384098598320, 362986684146456000, 821051025385244160, 2305807824841605120, 3041324492229179280
Offset: 1
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
- Index to Jordan function ratios J_k/J_1.
-
A161167 := proc(n)
add(numtheory[mobius](n/d)*d^16,d=numtheory[divisors](n)) ;
%/numtheory[phi](n) ;
end proc:
for n from 1 to 5000 do
printf("%d %d\n",n,A161167(n)) ;
end do: # R. J. Mathar, Mar 15 2016
-
A161167[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(17-1)/EulerPhi[n]&]; Array[A161167,20]
f[p_, e_] := p^(15*e - 15) * (p^16-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
-
vector(100, n, sumdiv(n^15, d, if(ispower(d, 16), moebius(sqrtnint(d, 16))*sigma(n^15/d), 0))) \\ Altug Alkan, Nov 26 2015
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^16 - 1)*f[i,1]^(15*f[i,2] - 15)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022
A344210
a(n) = Sum_{d|n} mu(n/d) * d^n / phi(n).
Original entry on oeis.org
1, 3, 13, 120, 781, 22932, 137257, 4177920, 64566801, 2497558338, 28531167061, 2228476723200, 25239592216021, 1851888100411464, 54736732481116543, 2305807824841605120, 51702516367896047761, 6557709646516945221396, 109912203092239643840221
Offset: 1
-
Table[DivisorSum[n,MoebiusMu[n/#]*#^n/EulerPhi[n]&],{n,20}] (* Giorgos Kalogeropoulos, May 13 2021 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^n)/eulerphi(n);
Comments