cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A294351 Product of first n terms of the binomial transform of the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 2, 8, 72, 1512, 74088, 8446032, 2238198480, 1376492065200, 1957371716714400, 6404520257089516800, 47989070286371749382400, 820133211194093196945216000, 31862175254890520701321641600000, 2805942463821933705561890367504000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*PartitionsQ[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]

A307264 Expansion of (1/(1 - x)) * Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).

Original entry on oeis.org

1, 2, 3, 5, 10, 22, 49, 107, 229, 486, 1035, 2225, 4825, 10508, 22875, 49624, 107154, 230356, 493471, 1054602, 2250850, 4801825, 10244940, 21865466, 46680201, 99659713, 212697816, 453634533, 966551216, 2057052465, 4372660927, 9284272791, 19692591418
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Comments

Binomial transform of A000700.

Crossrefs

Programs

  • Maple
    a:=series((1/(1-x))*mul(1/(1+(-x)^k/(1-x)^k),k=1..100),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 03 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - x) Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x)) * Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)).
a(n) = Sum_{k=0..n} binomial(n,k)*A000700(k).
a(n) ~ 2^(n-1) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 01 2019
Previous Showing 21-22 of 22 results.