cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 498 results. Next

A273042 Numbers k such that (28*10^k + 191)/3 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 9, 10, 33, 49, 92, 109, 548, 757, 814, 1289, 1460, 1644, 2782, 6355, 8028, 9276, 9366, 9765, 12002, 12089, 14491, 16180, 29102, 30989, 151682, 183403, 190105, 253210
Offset: 1

Views

Author

Robert Price, May 13 2016

Keywords

Comments

For k > 1, numbers k such that the digit 9 followed by k-2 occurrences of the digit 3 followed by the digits 97 is prime (see Example section).
a(35) > 3*10^5.

Examples

			3 is in this sequence because (28*10^3 + 191)/3 = 9397 is prime.
Initial terms and associated primes:
a(1) = 0, 73;
a(2) = 1, 157:
a(3) = 2, 997;
a(4) = 3, 9397;
a(5) = 5, 933397, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(28*10^# + 191)/3] &]
  • PARI
    is(n)=ispseudoprime((28*10^n + 191)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(31)-a(33) from Robert Price, Feb 27 2020
a(34) from Robert Price, Jul 12 2023

A273063 Numbers k such that (112*10^k + 17)/3 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 44, 53, 79, 89, 95, 120, 224, 259, 290, 488, 725, 821, 1815, 3096, 3100, 3404, 5909, 8054, 11879, 17298, 25588, 41516, 127324, 191900
Offset: 1

Views

Author

Robert Price, May 14 2016

Keywords

Comments

For k > 0, numbers k such that the digits 37 followed by k-1 occurrences of the digit 3 followed by the digit 9 is prime (see Example section).
a(31) > 3*10^5.

Examples

			3 is in this sequence because (112*10^3+17)/3 = 37339 is prime.
Initial terms and associated primes:
a(1) = 0, 43;
a(2) = 1, 379:
a(3) = 2, 3739;
a(4) = 3, 37339;
a(5) = 4, 373339, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(112*10^# + 17)/3] &]
  • PARI
    is(n)=ispseudoprime((112*10^n + 17)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(29)-a(30) from Robert Price, Mar 05 2020

A273097 Numbers k such that 4*10^k + 87 is prime.

Original entry on oeis.org

1, 2, 4, 5, 13, 25, 27, 32, 37, 38, 40, 45, 57, 80, 91, 151, 214, 441, 644, 764, 797, 1222, 2329, 2931, 4324, 21794, 22396, 24041, 46420, 51489, 55165, 126625
Offset: 1

Views

Author

Robert Price, May 15 2016

Keywords

Comments

For k > 1, numbers k such that the digit 4 followed by k-2 occurrences of the digit 0 followed by the digits 87 is prime (see Example section).
a(33) > 3*10^5.

Examples

			4 is in this sequence because 4*10^4 + 87 = 40087 is prime.
Initial terms and associated primes:
a(1) = 1, 127:
a(2) = 2, 487;
a(3) = 4, 40087;
a(4) = 5, 400087;
a(5) = 13, 40000000000087, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[4*10^# + 87] &]
  • PARI
    is(n)=ispseudoprime(4*10^n + 87) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(32) from Robert Price, Aug 15 2018

A273265 Numbers k such that (16*10^k + 161)/3 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 10, 16, 17, 35, 53, 121, 155, 178, 487, 880, 1153, 2136, 2790, 2803, 5775, 5845, 5971, 7131, 13213, 13813, 17153, 31461, 38735, 93577, 188457
Offset: 1

Views

Author

Robert Price, May 18 2016

Keywords

Comments

For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 3 followed by the digits 87 is prime (see Example section).
a(33) > 2*10^5.

Examples

			3 is in this sequence because (16*10^3 + 161)/3 = 5387 is prime.
Initial terms and associated primes:
a(1) = 0, 59;
a(2) = 1, 107;
a(3) = 2, 587;
a(4) = 3, 5387;
a(5) = 6, 5333387, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(16*10^# + 161)/3] &]
  • PARI
    is(n)=ispseudoprime((16*10^n + 161)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(32) from Robert Price, Feb 27 2019

A273371 Numbers k such that (17*10^k - 77)/3 is prime.

Original entry on oeis.org

1, 2, 3, 6, 9, 15, 21, 26, 33, 42, 131, 168, 434, 464, 501, 1004, 1011, 1089, 1509, 2025, 2283, 2526, 9150, 9464, 14139, 14827, 18941, 32426, 36719, 42933, 138569
Offset: 1

Views

Author

Robert Price, May 20 2016

Keywords

Comments

For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 6 followed by the digits 41 is prime (see Example section).
a(32) > 3*10^5.

Examples

			3 is in this sequence because (17*10^3-77)/3 = 5641 is prime.
Initial terms and associated primes:
a(1) = 1, 31;
a(2) = 2, 541;
a(3) = 3, 5641;
a(4) = 6, 5666641;
a(5) = 9, 5666666641, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(17*10^# - 77)/3] &]
  • PARI
    is(n)=ispseudoprime((17*10^n - 77)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(31) from Robert Price, Aug 21 2019

A273542 Numbers k such that (238*10^k - 1)/3 is prime.

Original entry on oeis.org

0, 2, 3, 4, 6, 10, 12, 38, 40, 47, 59, 76, 131, 154, 227, 404, 762, 782, 987, 993, 3449, 5692, 10086, 11630, 15135, 26384, 28233, 33179, 48352, 103210, 118265, 145276, 151979, 209715, 210712
Offset: 1

Views

Author

Robert Price, May 24 2016

Keywords

Comments

For k > 1, numbers k such that the digits 79 followed by k occurrences of the digit 3 is prime (see Example section).
a(36) > 3*10^5.

Examples

			3 is in this sequence because (238*10^3-1)/3 = 79333 is prime.
Initial terms and associated primes:
a(1) = 0, 79;
a(2) = 2, 7933;
a(3) = 3, 79333;
a(4) = 4, 793333;
a(5) = 6, 79333333, etc.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime((238*10^n - 1) div 3)]; // Vincenzo Librandi, May 25 2016
    
  • Mathematica
    Select[Range[0, 100000], PrimeQ[(238*10^# - 1)/3] &]
  • PARI
    is(n)=ispseudoprime(238*10^n\3) \\ Charles R Greathouse IV, Jun 08 2016

Extensions

a(30)-a(33) from Robert Price, Apr 01 2020
a(34)-a(35) from Robert Price, Oct 26 2023

A273679 Numbers k such that 10^k - 1000000001 is prime.

Original entry on oeis.org

11, 18, 22, 26, 27, 36, 45, 59, 140, 162, 201, 278, 427, 563, 588, 757, 951, 2006, 3938, 4127, 4490, 5637, 6074, 6725, 7025, 10191, 25628, 39415, 51872, 57501, 90227, 115773, 117142, 148934
Offset: 1

Views

Author

Robert Price, May 27 2016

Keywords

Comments

For k > 9, numbers k such that k-10 occurrences of the digit 9 followed by the digits 8999999999 is prime (see Example section).
a(35) > 2*10^5.

Examples

			11 is in this sequence because 10^11 - 1000000001 = 98999999999 is prime.
Initial terms and associated primes:
a(1) = 11, 98999999999,
a(2) = 18, 999999998999999999,
a(3) = 22, 9999999999998999999999,
a(4) = 26, 99999999999999998999999999,
a(5) = 27, 999999999999999998999999999, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[10^#-1000000001] &]
  • PARI
    is(n)=ispseudoprime(10^n-10^9-1) \\ Charles R Greathouse IV, Jun 08 2016
    
  • Python
    from sympy import isprime
    def afind(limit):
        tenk = 10**10
        for k in range(10, limit+1):
            if isprime(tenk - 1000000001): print(k, end=", ")
            tenk *= 10
    afind(100000) # Michael S. Branicky, Nov 18 2021

Extensions

a(32)-a(33) from Robert Price, Mar 01 2018
a(34) from Robert Price, Dec 31 2020

A273726 Numbers k such that (25*10^k + 59)/3 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 26, 52, 75, 97, 98, 160, 227, 295, 413, 686, 901, 975, 1088, 1481, 2555, 4001, 4361, 5637, 7568, 8641, 19526, 26633, 92186
Offset: 1

Views

Author

Robert Price, May 28 2016

Keywords

Comments

For k > 1, numbers k such that the digit 8 followed by k-2 occurrences of the digit 3 followed by the digits 53 is prime (see Example section).
a(29) > 2*10^5.

Examples

			3 is in this sequence because (25*10^3+59)/3 = 8353 is prime.
Initial terms and associated primes:
a(1) = 1, 103;
a(2) = 2, 853;
a(3) = 3, 8353;
a(4) = 5, 833353;
a(5) = 6, 83333353, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(25*10^# + 59)/3] &]
  • PARI
    is(n)=ispseudoprime((25*10^n + 59)/3) \\ Charles R Greathouse IV, Jun 08 2016

A273728 Numbers k such that (17*10^k + 79)/3 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 37, 45, 55, 139, 205, 264, 445, 975, 1111, 1298, 1340, 1835, 2264, 2317, 2897, 2955, 3001, 4134, 6637, 7063, 20613, 114795, 147890
Offset: 1

Views

Author

Robert Price, May 28 2016

Keywords

Comments

For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 6 followed by the digits 93 is prime (see Example section).
a(30) > 3*10^5. - Robert Price, Jul 10 2023

Examples

			3 is in this sequence because (17*10^3+79)/3 = 5693 is prime.
Initial terms and associated primes:
a(1) = 1, 83;
a(2) = 2, 593;
a(3) = 3, 5693;
a(4) = 5, 566693;
a(5) = 7, 56666693, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(17*10^# + 79)/3] &]
  • PARI
    is(n)=ispseudoprime((17*10^n + 79)/3) \\ Charles R Greathouse IV, Jun 08 2016

Extensions

a(28)-a(29) from Robert Price, Apr 15 2019

A273783 Numbers k such that (86*10^k - 77)/9 is prime.

Original entry on oeis.org

2, 3, 8, 9, 12, 14, 27, 32, 50, 80, 98, 99, 194, 237, 338, 828, 830, 1265, 2583, 3639, 5232, 5940, 9371, 10268, 13424, 26975, 36147, 60165, 69260, 93263
Offset: 1

Views

Author

Robert Price, May 30 2016

Keywords

Comments

For k > 1, numbers k such that the digit 9 followed by k-2 occurrences of the digit 5 followed by the digits 47 is prime (see Example section).
a(31) > 2*10^5.

Examples

			3 is in this sequence because (86*10^3 - 77)/9 = 9547 is prime.
Initial terms and associated primes:
a(1) = 2, 947;
a(2) = 3, 9547;
a(3) = 8, 955555547;
a(4) = 9, 9555555547;
a(5) = 12, 9555555555547, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(86*10^# - 77)/9] &]
  • PARI
    is(n)=ispseudoprime((86*10^n - 77)/9) \\ Charles R Greathouse IV, Jun 08 2016
Previous Showing 61-70 of 498 results. Next