A273042
Numbers k such that (28*10^k + 191)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 9, 10, 33, 49, 92, 109, 548, 757, 814, 1289, 1460, 1644, 2782, 6355, 8028, 9276, 9366, 9765, 12002, 12089, 14491, 16180, 29102, 30989, 151682, 183403, 190105, 253210
Offset: 1
3 is in this sequence because (28*10^3 + 191)/3 = 9397 is prime.
Initial terms and associated primes:
a(1) = 0, 73;
a(2) = 1, 157:
a(3) = 2, 997;
a(4) = 3, 9397;
a(5) = 5, 933397, etc.
-
Select[Range[0, 100000], PrimeQ[(28*10^# + 191)/3] &]
-
is(n)=ispseudoprime((28*10^n + 191)/3) \\ Charles R Greathouse IV, Jun 13 2017
A273063
Numbers k such that (112*10^k + 17)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 44, 53, 79, 89, 95, 120, 224, 259, 290, 488, 725, 821, 1815, 3096, 3100, 3404, 5909, 8054, 11879, 17298, 25588, 41516, 127324, 191900
Offset: 1
3 is in this sequence because (112*10^3+17)/3 = 37339 is prime.
Initial terms and associated primes:
a(1) = 0, 43;
a(2) = 1, 379:
a(3) = 2, 3739;
a(4) = 3, 37339;
a(5) = 4, 373339, etc.
-
Select[Range[0, 100000], PrimeQ[(112*10^# + 17)/3] &]
-
is(n)=ispseudoprime((112*10^n + 17)/3) \\ Charles R Greathouse IV, Jun 13 2017
A273097
Numbers k such that 4*10^k + 87 is prime.
Original entry on oeis.org
1, 2, 4, 5, 13, 25, 27, 32, 37, 38, 40, 45, 57, 80, 91, 151, 214, 441, 644, 764, 797, 1222, 2329, 2931, 4324, 21794, 22396, 24041, 46420, 51489, 55165, 126625
Offset: 1
4 is in this sequence because 4*10^4 + 87 = 40087 is prime.
Initial terms and associated primes:
a(1) = 1, 127:
a(2) = 2, 487;
a(3) = 4, 40087;
a(4) = 5, 400087;
a(5) = 13, 40000000000087, etc.
-
Select[Range[0, 100000], PrimeQ[4*10^# + 87] &]
-
is(n)=ispseudoprime(4*10^n + 87) \\ Charles R Greathouse IV, Jun 13 2017
A273265
Numbers k such that (16*10^k + 161)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 8, 10, 16, 17, 35, 53, 121, 155, 178, 487, 880, 1153, 2136, 2790, 2803, 5775, 5845, 5971, 7131, 13213, 13813, 17153, 31461, 38735, 93577, 188457
Offset: 1
3 is in this sequence because (16*10^3 + 161)/3 = 5387 is prime.
Initial terms and associated primes:
a(1) = 0, 59;
a(2) = 1, 107;
a(3) = 2, 587;
a(4) = 3, 5387;
a(5) = 6, 5333387, etc.
-
Select[Range[0, 100000], PrimeQ[(16*10^# + 161)/3] &]
-
is(n)=ispseudoprime((16*10^n + 161)/3) \\ Charles R Greathouse IV, Jun 13 2017
A273371
Numbers k such that (17*10^k - 77)/3 is prime.
Original entry on oeis.org
1, 2, 3, 6, 9, 15, 21, 26, 33, 42, 131, 168, 434, 464, 501, 1004, 1011, 1089, 1509, 2025, 2283, 2526, 9150, 9464, 14139, 14827, 18941, 32426, 36719, 42933, 138569
Offset: 1
3 is in this sequence because (17*10^3-77)/3 = 5641 is prime.
Initial terms and associated primes:
a(1) = 1, 31;
a(2) = 2, 541;
a(3) = 3, 5641;
a(4) = 6, 5666641;
a(5) = 9, 5666666641, etc.
-
Select[Range[0, 100000], PrimeQ[(17*10^# - 77)/3] &]
-
is(n)=ispseudoprime((17*10^n - 77)/3) \\ Charles R Greathouse IV, Jun 13 2017
A273542
Numbers k such that (238*10^k - 1)/3 is prime.
Original entry on oeis.org
0, 2, 3, 4, 6, 10, 12, 38, 40, 47, 59, 76, 131, 154, 227, 404, 762, 782, 987, 993, 3449, 5692, 10086, 11630, 15135, 26384, 28233, 33179, 48352, 103210, 118265, 145276, 151979, 209715, 210712
Offset: 1
3 is in this sequence because (238*10^3-1)/3 = 79333 is prime.
Initial terms and associated primes:
a(1) = 0, 79;
a(2) = 2, 7933;
a(3) = 3, 79333;
a(4) = 4, 793333;
a(5) = 6, 79333333, etc.
-
[n: n in [0..500] | IsPrime((238*10^n - 1) div 3)]; // Vincenzo Librandi, May 25 2016
-
Select[Range[0, 100000], PrimeQ[(238*10^# - 1)/3] &]
-
is(n)=ispseudoprime(238*10^n\3) \\ Charles R Greathouse IV, Jun 08 2016
A273679
Numbers k such that 10^k - 1000000001 is prime.
Original entry on oeis.org
11, 18, 22, 26, 27, 36, 45, 59, 140, 162, 201, 278, 427, 563, 588, 757, 951, 2006, 3938, 4127, 4490, 5637, 6074, 6725, 7025, 10191, 25628, 39415, 51872, 57501, 90227, 115773, 117142, 148934
Offset: 1
11 is in this sequence because 10^11 - 1000000001 = 98999999999 is prime.
Initial terms and associated primes:
a(1) = 11, 98999999999,
a(2) = 18, 999999998999999999,
a(3) = 22, 9999999999998999999999,
a(4) = 26, 99999999999999998999999999,
a(5) = 27, 999999999999999998999999999, etc.
-
Select[Range[0, 100000], PrimeQ[10^#-1000000001] &]
-
is(n)=ispseudoprime(10^n-10^9-1) \\ Charles R Greathouse IV, Jun 08 2016
-
from sympy import isprime
def afind(limit):
tenk = 10**10
for k in range(10, limit+1):
if isprime(tenk - 1000000001): print(k, end=", ")
tenk *= 10
afind(100000) # Michael S. Branicky, Nov 18 2021
A273726
Numbers k such that (25*10^k + 59)/3 is prime.
Original entry on oeis.org
1, 2, 3, 5, 7, 26, 52, 75, 97, 98, 160, 227, 295, 413, 686, 901, 975, 1088, 1481, 2555, 4001, 4361, 5637, 7568, 8641, 19526, 26633, 92186
Offset: 1
3 is in this sequence because (25*10^3+59)/3 = 8353 is prime.
Initial terms and associated primes:
a(1) = 1, 103;
a(2) = 2, 853;
a(3) = 3, 8353;
a(4) = 5, 833353;
a(5) = 6, 83333353, etc.
-
Select[Range[0, 100000], PrimeQ[(25*10^# + 59)/3] &]
-
is(n)=ispseudoprime((25*10^n + 59)/3) \\ Charles R Greathouse IV, Jun 08 2016
A273728
Numbers k such that (17*10^k + 79)/3 is prime.
Original entry on oeis.org
1, 2, 3, 5, 7, 12, 37, 45, 55, 139, 205, 264, 445, 975, 1111, 1298, 1340, 1835, 2264, 2317, 2897, 2955, 3001, 4134, 6637, 7063, 20613, 114795, 147890
Offset: 1
3 is in this sequence because (17*10^3+79)/3 = 5693 is prime.
Initial terms and associated primes:
a(1) = 1, 83;
a(2) = 2, 593;
a(3) = 3, 5693;
a(4) = 5, 566693;
a(5) = 7, 56666693, etc.
-
Select[Range[0, 100000], PrimeQ[(17*10^# + 79)/3] &]
-
is(n)=ispseudoprime((17*10^n + 79)/3) \\ Charles R Greathouse IV, Jun 08 2016
A273783
Numbers k such that (86*10^k - 77)/9 is prime.
Original entry on oeis.org
2, 3, 8, 9, 12, 14, 27, 32, 50, 80, 98, 99, 194, 237, 338, 828, 830, 1265, 2583, 3639, 5232, 5940, 9371, 10268, 13424, 26975, 36147, 60165, 69260, 93263
Offset: 1
3 is in this sequence because (86*10^3 - 77)/9 = 9547 is prime.
Initial terms and associated primes:
a(1) = 2, 947;
a(2) = 3, 9547;
a(3) = 8, 955555547;
a(4) = 9, 9555555547;
a(5) = 12, 9555555555547, etc.
-
Select[Range[0, 100000], PrimeQ[(86*10^# - 77)/9] &]
-
is(n)=ispseudoprime((86*10^n - 77)/9) \\ Charles R Greathouse IV, Jun 08 2016
Comments