cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A304625 a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 0, 3, 19, 101, 501, 2486, 12398, 62329, 315436, 1605330, 8207552, 42124368, 216903051, 1119974861, 5796944342, 30068145889, 156250892593, 813310723907, 4239676354631, 22130265931880, 115654632452514, 605081974091853, 3168828466966365, 16610409114771876, 87141919856550506
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Number of partitions of n into 2 or more parts of n kinds. - Ilya Gutkovskiy, May 16 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724... and c = 0.268015212710733315686... - Vaclav Kotesovec, May 16 2018

A366022 Decimal expansion of a constant related to the asymptotics of A109085.

Original entry on oeis.org

4, 8, 9, 6, 3, 5, 2, 2, 6, 6, 8, 4, 3, 0, 3, 3, 7, 3, 0, 8, 1, 5, 4, 1, 6, 6, 0, 5, 7, 8, 4, 6, 8, 6, 1, 9, 3, 2, 2, 4, 1, 6, 6, 2, 5, 1, 0, 1, 1, 5, 8, 7, 8, 4, 5, 4, 9, 4, 0, 6, 7, 2, 9, 9, 7, 0, 5, 7, 5, 8, 4, 1, 5, 7, 1, 4, 0, 1, 6, 8, 3, 2, 8, 8, 7, 0, 5, 2, 2, 9, 0, 1, 9, 6, 3, 9, 3, 8, 9, 9, 1, 7, 3, 2, 7, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 26 2023

Keywords

Examples

			0.489635226684303373081541660578468619322416625...
		

Crossrefs

Programs

  • Mathematica
    val = -s*Log[r*s] / Sqrt[2*Pi*((-2 - 3*Log[r*s] + 2*Log[1 - r*s])* QPolyGamma[0, 1, r*s] + QPolyGamma[0, 1, r*s]^2 - 4*ArcTanh[1 - 2*r*s]*(Log[r*s] - Log[1 - r*s]/2 - r*(s/(1 - r*s))) - 2*(Log[1 - r*s]/(1 - r*s)) - QPolyGamma[1, 1, r*s] + r*s*Log[r* s]*((-r)*s^2*Log[r*s]* Derivative[0, 2][QPochhammer][r*s, r*s] + 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))] /. FindRoot[{s == 1/QPochhammer[r*s], 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s* Log[r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]]

Formula

Equals limit_{n->infinity} A109085(n) * n^(3/2) / A270915^n.
Previous Showing 11-12 of 12 results.