A361008
G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.
Original entry on oeis.org
1, 0, 0, 2, 0, 4, 2, 6, 8, 10, 20, 18, 42, 40, 78, 92, 140, 192, 258, 382, 480, 728, 902, 1334, 1698, 2404, 3148, 4292, 5742, 7608, 10304, 13430, 18192, 23592, 31720, 41144, 54766, 71188, 93762, 122156, 159420, 207820, 269380, 350726, 452434, 587520, 755446
Offset: 0
-
Table[SeriesCoefficient[Product[((1 + x^(2*k + 1))/(1 - x^(2*k + 1)))^k, {k, 0, n}], {x, 0, n}], {n, 0, 50}]
A294592
a(n) = [x^n] (theta_3(x)/theta_4(x))^n, where theta_() is the Jacobi theta function.
Original entry on oeis.org
1, 4, 32, 304, 3072, 32024, 340352, 3666016, 39878656, 437091892, 4819567552, 53401892240, 594093969408, 6631726263608, 74242911364864, 833237193123104, 9371924860764160, 105614054423502408, 1192210691317862048, 13478559927485340144, 152589996020498655232, 1729590806617202662528
Offset: 0
-
S:= series((JacobiTheta3(0,x)/JacobiTheta4(0,x))^n,x,51):
seq(coeff(S,x,n),n=0..50); # Robert Israel, Nov 03 2017
-
Table[SeriesCoefficient[(EllipticTheta[3, 0, x]/EllipticTheta[4, 0, x])^n, {x, 0, n}], {n, 0, 21}]
Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^(2 n), {k, 0, n}], {x, 0, n}], {n, 0, 21}]
Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^(2 n), {x, 0, n}], {n, 0, 21}]
(* Calculation of constant d: *) 1/r /. FindRoot[{s == EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s], EllipticTheta[4, 0, r*s] + r*s*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s] == r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]}, {r, 1/10}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 17 2024 *)
A319457
a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.
Original entry on oeis.org
1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
Offset: 0
-
Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]
A319672
a(n) = [x^n] Product_{k>=2} ((1 + x^k)/(1 - x^k))^n.
Original entry on oeis.org
1, 0, 4, 6, 40, 110, 520, 1778, 7568, 28320, 116224, 453046, 1837600, 7306234, 29565848, 118786526, 481192480, 1945153838, 7895908852, 32046260282, 130370798320, 530650047710, 2163191769336, 8824509524082, 36037768384832, 147277910160160, 602398740105712, 2465582764631334
Offset: 0
-
Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^n , {k, 2, n}], {x, 0, n}], {n, 0, 27}]
Table[SeriesCoefficient[((1 - x)/((1 + x) EllipticTheta[4, 0, x]))^n, {x, 0, n}], {n, 0, 27}]
Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k] + (-1)^k - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 27}]
A300412
a(n) = [x^n] Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k.
Original entry on oeis.org
1, 2, 16, 144, 1376, 15800, 210816, 3333372, 61688448, 1318588146, 32004369200, 869282342632, 26099925704928, 857736429098848, 30605729417479104, 1177841009504482200, 48614265201514729984, 2141639401723095243324, 100282931820560447963568, 4973060138191518242569120
Offset: 0
The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (2), 6, 16, 38, 88, ...
n = 2: 1, 4, (16), 60, 192, 596, ...
n = 3: 1, 6, 30, (144), 582, 2280, ...
n = 4: 1, 8, 48, 280, (1376), 6568, ...
n = 5: 1, 10, 70, 480, 2790, (15800), ...
-
Table[SeriesCoefficient[Product[((1 + n x^k)/(1 - n x^k))^k, {k, 1, n}], {x, 0, n}], {n, 0, 19}]
A303483
a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1).
Original entry on oeis.org
1, 2, 10, 64, 436, 3072, 22096, 161148, 1187118, 8812050, 65806720, 493827256, 3720698056, 28128081912, 213258301824, 1620878656280, 12346263051028, 94221026620572, 720267101230410, 5514346833878672, 42274910234115352, 324490877248800232, 2493471670778297856, 19179885230907692452
Offset: 0
a(0) = 1;
a(1) = [x^1] (1 + x)/(1 - x) = 2;
a(2) = [x^2] ((1 + x)^2*(1 + x^2))/((1 - x)^2*(1 - x^2)) = 10;
a(3) = [x^3] ((1 + x)^3*(1 + x^2)^2*(1 + x^3))/((1 - x)^3*(1 - x^2)^2*(1 - x^3)) = 64;
a(4) = [x^4] ((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4))/((1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4)) = 436;
a(5) = [x^5] ((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5))/((1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5)) = 3072, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (2), 2, 2, 2, 2, ...
n = 2: 1, 4, (10), 20, 34, 52, ...
n = 3: 1, 6, 22, (64), 158, 346, ...
n = 4: 1, 8, 38, 140, (436), 1200, ...
n = 5: 1, 10, 58, 256, 946, (3072), ...
-
Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
A304461
Coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(n^3).
Original entry on oeis.org
1, 2, 144, 29232, 12263552, 8807437800, 9671073636672, 15075101792958592, 31660212257148109824, 86182291753025176234602, 295133367252867736074882400, 1241742977667269060006125955952, 6296492342467004634980003629748736, 37869525230334631809014462278624137096
Offset: 0
-
nmax = 20; Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2/QPochhammer[x])^(n^3), {x, 0, n}], {n, 0, nmax}]
Comments