cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A361008 G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 2, 6, 8, 10, 20, 18, 42, 40, 78, 92, 140, 192, 258, 382, 480, 728, 902, 1334, 1698, 2404, 3148, 4292, 5742, 7608, 10304, 13430, 18192, 23592, 31720, 41144, 54766, 71188, 93762, 122156, 159420, 207820, 269380, 350726, 452434, 587520, 755446
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2*k + 1))/(1 - x^(2*k + 1)))^k, {k, 0, n}], {x, 0, n}], {n, 0, 50}]

Formula

a(n) ~ sqrt(A/(3*Pi)) * (7*zeta(3))^(11/72) * exp(3*(7*zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3)/(8*(7*zeta(3))^(1/3)) - 1/24 - Pi^4/(1344*zeta(3))) / (2^(3/4) * n^(47/72)), where A = A074962 is the Glaisher-Kinkelin constant.

A294592 a(n) = [x^n] (theta_3(x)/theta_4(x))^n, where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 32, 304, 3072, 32024, 340352, 3666016, 39878656, 437091892, 4819567552, 53401892240, 594093969408, 6631726263608, 74242911364864, 833237193123104, 9371924860764160, 105614054423502408, 1192210691317862048, 13478559927485340144, 152589996020498655232, 1729590806617202662528
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2017

Keywords

Crossrefs

Programs

  • Maple
    S:= series((JacobiTheta3(0,x)/JacobiTheta4(0,x))^n,x,51):
    seq(coeff(S,x,n),n=0..50); # Robert Israel, Nov 03 2017
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x]/EllipticTheta[4, 0, x])^n, {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^(2 n), {k, 0, n}], {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^(2 n), {x, 0, n}], {n, 0, 21}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s], EllipticTheta[4, 0, r*s] + r*s*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s] == r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]}, {r, 1/10}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^(2*n).
From Vaclav Kotesovec, Nov 05 2017: (Start)
a(n) ~ c * d^n / sqrt(n), where
d = 11.61255065799699699891360038489317237925475956178123836149123386457... and
c = 0.34456510029264878768512693687607064416428117641473856418257649837... (End)

A319457 a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.

Original entry on oeis.org

1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^n/(1 - x^(2*k))^(2*n).
a(n) = [x^n] exp(n*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).

A319672 a(n) = [x^n] Product_{k>=2} ((1 + x^k)/(1 - x^k))^n.

Original entry on oeis.org

1, 0, 4, 6, 40, 110, 520, 1778, 7568, 28320, 116224, 453046, 1837600, 7306234, 29565848, 118786526, 481192480, 1945153838, 7895908852, 32046260282, 130370798320, 530650047710, 2163191769336, 8824509524082, 36037768384832, 147277910160160, 602398740105712, 2465582764631334
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^n , {k, 2, n}], {x, 0, n}], {n, 0, 27}]
    Table[SeriesCoefficient[((1 - x)/((1 + x) EllipticTheta[4, 0, x]))^n, {x, 0, n}], {n, 0, 27}]
    Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k] + (-1)^k - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 27}]

Formula

a(n) = [x^n] ((1 - x)/((1 + x)*theta_4(x)))^n, where theta_4() is the Jacobi theta function.
a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(2*k) - sigma(k) + (-1)^k - 1)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 4.16958962845360844086951404338054148667024... and c = 0.23380422010834870751549442953816486722... - Vaclav Kotesovec, Oct 06 2018

A300412 a(n) = [x^n] Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k.

Original entry on oeis.org

1, 2, 16, 144, 1376, 15800, 210816, 3333372, 61688448, 1318588146, 32004369200, 869282342632, 26099925704928, 857736429098848, 30605729417479104, 1177841009504482200, 48614265201514729984, 2141639401723095243324, 100282931820560447963568, 4973060138191518242569120
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k begins:
n = 0: (1),  0,   0,    0,     0,       0,  ...
n = 1:  1,  (2),  6,   16,    38,      88,  ...
n = 2:  1,   4, (16),  60,   192,     596,  ...
n = 3:  1,   6,  30, (144),  582,    2280,  ...
n = 4:  1,   8,  48,  280, (1376),   6568,  ...
n = 5:  1,  10,  70,  480,  2790,  (15800), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + n x^k)/(1 - n x^k))^k, {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2 * n^n * (1 + 4/n + 14/n^2 + 44/n^3 + 124/n^4 + 328/n^5 + 824/n^6 + 1980/n^7 + 4590/n^8 + 10320/n^9 + 22584/n^10 + ...), for coefficients see A261451. - Vaclav Kotesovec, Mar 05 2018

A303483 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1).

Original entry on oeis.org

1, 2, 10, 64, 436, 3072, 22096, 161148, 1187118, 8812050, 65806720, 493827256, 3720698056, 28128081912, 213258301824, 1620878656280, 12346263051028, 94221026620572, 720267101230410, 5514346833878672, 42274910234115352, 324490877248800232, 2493471670778297856, 19179885230907692452
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 + x)/(1 - x) = 2;
a(2) = [x^2] ((1 + x)^2*(1 + x^2))/((1 - x)^2*(1 - x^2)) = 10;
a(3) = [x^3] ((1 + x)^3*(1 + x^2)^2*(1 + x^3))/((1 - x)^3*(1 - x^2)^2*(1 - x^3)) = 64;
a(4) = [x^4] ((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4))/((1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4)) = 436;
a(5) = [x^5] ((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5))/((1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5)) = 3072, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1) begins:
n = 0: (1),  0,   0,    0,    0,     0,  ...
n = 1:  1,  (2),  2,    2,    2,     2,  ...
n = 2:  1,   4, (10),  20,   34,    52,  ...
n = 3:  1,   6,  22,  (64), 158,   346,  ...
n = 4:  1,   8,  38,  140, (436), 1200,  ...
n = 5:  1,  10,  58,  256,  946, (3072), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.23317816342157644853479309078... - Vaclav Kotesovec, May 04 2018

A304461 Coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(n^3).

Original entry on oeis.org

1, 2, 144, 29232, 12263552, 8807437800, 9671073636672, 15075101792958592, 31660212257148109824, 86182291753025176234602, 295133367252867736074882400, 1241742977667269060006125955952, 6296492342467004634980003629748736, 37869525230334631809014462278624137096
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2018

Keywords

Comments

In general, for m>=3, coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(n^m) is asymptotic to 2^n * n^(m*n) / n!.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2/QPochhammer[x])^(n^3), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ 2^(n - 1/2) * exp(n) * n^(2*n - 1/2) / sqrt(Pi).
Previous Showing 11-17 of 17 results.