A275285 Numbers k such that 33*10^k + 7 is prime.
1, 2, 5, 6, 30, 58, 66, 127, 138, 179, 287, 520, 767, 954, 966, 1254, 1313, 1976, 2266, 2496, 3137, 4058, 4411, 7009, 11736, 12155, 21328, 31124, 31589, 38581, 42683, 54634, 56634, 85297
Offset: 1
Examples
5 is in this sequence because 33*10^5 + 7 = 3300007 is prime. Initial terms and associated primes: a(1) = 1, 337; a(2) = 2, 3307; a(3) = 5, 3300007; a(4) = 6, 33000007; a(5) = 30, 33000000000000000000000000000007, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 330w7.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[33*10^# + 7] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime(33*10^n+7), print1(n, ", "))); \\ Altug Alkan, Jul 21 2016
Comments