cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A271447 Smallest of 7 consecutive numbers each divisible by a cube.

Original entry on oeis.org

1204244328624, 4224987665871, 17911333617875, 18105599700248, 20656510708125, 20917131156124, 21707874550623, 30199064929748, 30517770625623, 32526295907749, 43865182834744, 47130022943124, 48617303189245, 50499660546373, 53555917697500, 53971309892123
Offset: 1

Views

Author

Giovanni Resta, Apr 26 2016

Keywords

Examples

			a(1) = 1204244328624 is the smallest cubeful number followed by other 4 cubeful numbers. They are divisible by 2^4, 5^3, 19^3, 3^3, 11^4, 37^3, and 7^3, respectively.
		

Crossrefs

A088080 Start of n successive numbers divisible by n-th powers.

Original entry on oeis.org

1, 8, 1375, 202099373, 105636978090621, 283435321166212288109372
Offset: 1

Views

Author

Amarnath Murthy, Sep 22 2003

Keywords

Comments

a(5) <= 105636978090621.

Examples

			a(3)=1375 because 1375=5^3*11, 1376=2^3*172, 1377=3^3*51; all multiples of cubes.
		

Crossrefs

Extensions

Corrected and extended by Don Reble, Sep 27 2003
a(5) from Donovan Johnson, Dec 14 2010
a(6) from Giovanni Resta, Dec 19 2019

A349236 Gaps between cubefree numbers: a(n) = A004709(n+1) - A004709(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2021

Keywords

Comments

This sequence is unbounded since by the Chinese Remainder Theorem there are arbitrarily long runs of consecutive numbers that are not cubefree.
The first occurrence of a(n) = 1, 2, ... is at n = 1, 7, 68, 1145, 18825, 15003967, ...
The asymptotic density of the occurrences of 1 in this sequence is density(A340152)/density(A004709) = A340153/A088453 = 0.8136635872...

Examples

			a(1) = A004709(2) - A004709(1) = 2 - 1 = 1.
a(7) = A004709(8) - A004709(7) = 9 - 7 = 2.
		

Crossrefs

Programs

  • Mathematica
    cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Differences @ Select[Range[100], cubeFreeQ]
  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    isA004709(n) = issquarefree(A003557(n));
    A349236list(first_n) = { my(v=vector(first_n),k=0,e=1); for(n=2,oo,if(isA004709(n),k++; v[k] = n-e; e = n); if(#v==k, return(v))); }; \\ Antti Karttunen, Nov 11 2021

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = zeta(3) (A002117).
Previous Showing 11-13 of 13 results.