cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A275300 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^3 with x + y + z a square, where x,y,z are integers with x >= |y| <= |z|, and w is a nonnegative integer.

Original entry on oeis.org

1, 3, 3, 3, 2, 1, 5, 4, 3, 5, 4, 5, 1, 2, 9, 4, 4, 4, 7, 6, 1, 2, 6, 1, 7, 7, 8, 6, 3, 5, 7, 1, 7, 11, 11, 9, 4, 5, 6, 4, 3, 15, 10, 8, 2, 7, 9, 1, 4, 9, 5, 12, 5, 11, 10, 3, 8, 5, 3, 8, 7, 10, 10, 2, 4, 11, 9, 8, 6, 10, 13, 1, 7, 10, 8, 8, 2, 10, 14, 3, 10
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 22 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 5, 12, 20, 23, 31, 47, 71, 103, 148, 164.
The author proved in arXiv:1604.06723 that any natural number can be written as x^2 + y^2 + z^2 + w^2 with x + y + z a square, where x,y,z,w are integers.
See also A275297, A275298, A275299 and A272620 for similar conjectures.

Examples

			a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 0^3 with 0 + 0 + 0 = 0^2 and 0 = 0 = 0.
a(5) = 1 since 5 = 2^2 + 0^2 + (-1)^2 + 0^3 with 2 + 0 + (-1) = 1^2 and 2 > 0 < |-1|.
a(12) = 1 since 12 = 3^2 + (-1)^2 + (-1)^2 + 1^3 with 3 + (-1) + (-1) = 1^2 and 3 > |-1| = |-1|.
a(20) = 1 since 20 = 3^2 + 1^2 + (-3)^2 + 1^3 with 3 + 1 + (-3) = 1^2 and 3 > 1 < |-3|.
a(23) = 1 since 23 = 3^2 + (-2)^2 + 3^2 + 1^3 with 3 + (-2) + 3 = 2^2 and 3 > |-2| < 3.
a(31) = 1 since 31 = 5^2 + 1^2 + (-2)^2 + 1^3 with 5 + 1 + (-2) = 2^2 and 5 > 1 < |-2|.
a(47) = 1 since 47 = 6^2 + 1^2 + (-3)^2 + 1^3 with 6 + 1 + (-3) = 2^2 and 6 > 1 < |-3|.
a(71) = 1 since 71 = 6^2 + 3^2 + (-5)^2 + 1^3 with 6 + 3 + (-5) = 2^2 and 6 > 3 < |-5|.
a(103) = 1 since 103 = 7^2 + 2^2 + 7^2 + 1^3 with 7 + 2 + 7 = 4^2 and 7 > 2 < 7.
a(148) = 1 since 148 = 9^2 + (-2)^2 + (-6)^2 + 3^3 with 9 + (-2) + (-6) = 1^2 and 9 > |-2| < |-6|.
a(164) = 1 since 164 = 9^2 + 1^2 + (-9)^2 + 1^3 with 9 + 1 + (-9) = 1^2 and 9 > 1 < |-9|.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-w^3-y^2-z^2]&&SQ[Sqrt[n-w^3-y^2-z^2]+(-1)^i*y+(-1)^j*z],r=r+1],{w,0,n^(1/3)},{y,0,Sqrt[(n-w^3)/3]},{i,0,Min[1,y]},{z,y,Sqrt[n-w^3-2y^2]},{j,0,Min[1,z]}];Print[n," ",r];Continue,{n,0,80}]

A273875 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with x*y + 2*y*z + 4*z*x a nonnegative cube, where w,x,y,z are integers with w >= 0 and x > 0.

Original entry on oeis.org

1, 2, 2, 2, 4, 3, 1, 1, 4, 3, 1, 1, 3, 3, 1, 1, 3, 6, 4, 6, 5, 2, 4, 2, 4, 5, 5, 5, 5, 5, 3, 2, 4, 6, 4, 8, 5, 5, 3, 4, 7, 7, 6, 3, 10, 2, 4, 1, 3, 10, 4, 8, 4, 8, 5, 4, 5, 9, 5, 4, 4, 4, 10, 1, 11, 11, 4, 10, 10, 4, 4, 9, 6, 9, 7, 5, 6, 8, 5, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 02 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) Any positive integer can be written as w^2 + x^2 + y^2 + z^2 with x*y + 2*y*z + 4*z*x = 4*t^3 for some t = 0,1,2,..., where w,x,y,z are integers with x > 0. Also, any natural number can be written as w^2 + x^2 + y^2 + z^2 with x*y + 3*y*z + 4*z*x = 3*t^3 for some t = 0,1,2,..., where w,x,y,z are integers with x >= 0.
(iii) For each triple (a,b,c) = (1,1,2), (1,2,3), (3,2,1), (4,1,1), any natural number can be written as w^2 + x^2 + y^2 + z^2 with a*x*y + b*y*z - c*z*w a nonnegative cube, where w,x,y are nonnegative integers and z is an integer.
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.

Examples

			a(1) = 1 since 1 = 0^2 + 1^2 + 0^2 + 0^2 with 1*0 + 2*0*0 + 4*0*1 = 0^3.
a(7) = 1 since 7 = 2^2 + 1^2 + (-1)^2 + 1^2 with 1*(-1) + 2*(-1)*1 + 4*1*1 = 1^3.
a(8) = 1 since 8 = 2^2 + 2^2 + 0^2 + 0^2 with 2*0 + 2*0*0 + 4*0*2 = 0^3.
a(11) = 1 since 11 = 3^2 + 1^2 + 1^2 + 0^2 with 1*1 + 2*1*0 + 4*0*1 = 1^3.
a(12) = 1 since 12 = 3^2 + 1^2 + (-1)^2 + 1^2 with 1*(-1) + 2*(-1)*1 + 4*1*1 = 1^3.
a(15) = 1 since 15 = 1^2 + 1^2 + (-3)^2 + (-2)^2 with 1*(-3) + 2*(-3)*(-2) + 4*(-2)*1 = 1^3.
a(16) = 1 since 16 = 0^2 + 4^2 + 0^2 + 0^2 with 4*0 + 2*0*0 + 4*0*4 = 0^3.
a(48) = 1 since 48 = 4^2 + 4^2 + 0^2 + 4^2 with 4*0 + 2*0*4 + 4*4*4 = 4^3.
a(112) = 1 since 112 = 4^2 + 8^2 + (-4)^2 + 4^2 with 8*(-4) + 2*(-4)*4 + 4*4*8 = 4^3.
a(131) = 1 since 131 = 9^2 + 3^2 + (-4)^2 + 5^2 with 3*(-4) + 2*(-4)*5 + 4*5*3 = 2^3.
a(176) = 1 since 176 = 12^2 + 4^2 + 0^2 + 4^2 with 4*0 + 2*0*4 + 4*4*4 = 4^3.
a(224) = 1 since 224 = 0^2 + 8^2 + 4^2 + 12^2 with 8*4 + 2*4*12 + 4*12*8 = 8^3.
a(304) = 1 since 304 = 4^2 + 4^2 + (-16)^2 + (-4)^2 with 4*(-16) + 2*(-16)*(-4) + 4*(-4)*4 = 0^3.
a(944) = 1 since 944 = 20^2 + 12^2 + (-16)^2 + 12^2 with 12*(-16) + 2*(-16)*12 + 4*12*12 = 0^3.
a(4784) = 1 since 4784 = 60^2 + 28^2 + (-16)^2 + 12^2 with 28*(-16) + 2*(-16)*12 + 4*12*28 = 8^3.
a(8752) = 1 since 8752 = 92^2 + 4^2 + (-16)^2 + (-4)^2 with 4*(-16) + 2*(-16)*(-4) + 4*(-4)*4 = 0^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    CQ[n_]:=QQ[n]=n>=0&&IntegerQ[n^(1/3)]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&CQ[x*(-1)^j*y+2(-1)^(j+k)*y*z+4*(-1)^k*z*x],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[n-x^2]},{j,0,Min[1,y]},{z,0,Sqrt[n-x^2-y^2]},{k,0,Min[1,z]}];Print[n," ",r];Continue,{n,1,80}]

A281494 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x + y + z + w = 2^(floor((ord_2(n)+1)/2)), where ord_2(n) is the 2-adic order of n, and x,y,z,w are integers with |x| <= |y| <= |z| <= |w|.

Original entry on oeis.org

1, 1, 3, 5, 1, 2, 4, 1, 2, 4, 1, 6, 4, 1, 3, 5, 1, 4, 3, 3, 4, 4, 2, 2, 3, 2, 3, 8, 1, 3, 4, 1, 5, 5, 2, 4, 3, 2, 2, 4, 1, 7, 7, 2, 4, 3, 2, 6, 3, 3, 3, 9, 2, 5, 4, 1, 5, 4, 2, 6, 4, 3, 6, 5, 2, 5, 2, 2, 4, 6, 2, 4, 6, 4, 5, 6, 3, 4, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 22 2017

Keywords

Comments

The author proved in arXiv:1701.05868 that a(n) > 0 for all n > 0. This is stronger than Lagrange's four-square theorem.
It seems that a(n) = 1 only for n = 1, 5, 11, 17, 29, 41, 101, 107, 2*4^k and 14*4^k (k = 0,1,2,...).

Examples

			a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 + 0 + 0 + 1 = 1 =2^0 = 2^(floor((ord_2(1)+1)/2)).
a(2) = 1 since 2 = 0^2 + 0^2 + 1^2 + 1^2 with 0 + 0 + 1 + 1 = 2 = 2^(floor((ord_2(2)+1)/2)).
a(5) = 1 since 5 = 0^2 + 0^2 + (-1)^2 + 2^2 with 0 + 0 + (-1) + 2 = 1 = 2^0 = 2^(floor((ord_2(5)+1)/2)).
a(6) = 2 since 6 = 0^2 + 1^2 + (-1)^2 + 2^2 = 0^2 + (-1)^2 + 1^2 + 2^2 with 0 + 1 + (-1) + 2 = 0 + (-1) + 1 + 2 = 2 = 2^(floor((ord_2(6)+1)/2)).
a(11) = 1 since 11 = 0^2 + (-1)^2 + (-1)^2 + 3^2 with 0 + (-1) + (-1) + 3 = 1 = 2^0 = 2^(floor((ord_2(11)+1)/2)).
a(14) = 1 since 14 = 0^2 + 1^2 + (-2)^2 + 3^2 with 0 + 1 + (-2) + 3 = 2 = 2^(floor((ord_2(14)+1)/2)).
a(17) = 1 since 17 = 0^2 + 2^2 + 2^2 + (-3)^2 with 0 + 2 + 2 + (-3) = 1 = 2^0 = 2^(floor((ord_2(17)+1)/2)).
a(41) = 1 since 41 = 0^2 + 0^2 + (-4)^2 + 5^2 with 0 + 0 + (-4) + 5 = 1 = 2^0 = 2^(floor((ord_2(41)+1)/2)).
a(101) = 1 since 101 = 0^2 + (-1)^2 + (-6)^2 + 8^2 with 0 + (-1) + (-6) + 8 = 1 = 2^0 = 2^(floor((ord_2(101)+1)/2)).
a(107) = 1 since 107 = (-1)^2 + (-3)^2 + (-4)^2 + 9^2 with (-1) + (-3) + (-4) + 9 = 1 = 2^0 = 2^(floor((ord_2(107)+1)/2)).
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Ord[p_,n_]=Ord[p,n]=IntegerExponent[n,p];
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&((-1)^i*x+(-1)^j*y+(-1)^k*z+(-1)^s*Sqrt[n-x^2-y^2-z^2]==2^(Floor[(Ord[2,n]+1)/2])),r=r+1],{x,0,Sqrt[n/4]},{i,0,Min[x,1]},{y,x,Sqrt[(n-x^2)/3]},{j,0,Min[y,1]},{z,y,Sqrt[(n-x^2-y^2)/2]},{k,0,Min[z,1]},{s,0,Min[Sqrt[n-x^2-y^2-z^2],1]}];
    Print[n," ",r];Continue,{n,1,80}]
Previous Showing 21-23 of 23 results.