cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A366158 Number of distinct determinants of 3 X 3 matrices with entries from {0, 1, ..., n}.

Original entry on oeis.org

1, 5, 25, 77, 179, 355, 609, 995, 1497, 2167, 2999, 4069, 5289, 6841, 8595, 10661, 13023, 15777, 18795, 22305, 26085, 30397, 35107, 40381, 45929, 52247, 58929, 66287, 74139, 82767, 91643, 101701, 112013, 123235
Offset: 0

Views

Author

Robert P. P. McKone, Oct 02 2023

Keywords

Comments

These determinants a(n) equivalently represent the leading coefficient (coefficient of term with degree 0) of the characteristic polynomials for such matrices, thereby providing a direct measure and lower bound of the uniqueness of these polynomials within this matrix class.
The maximal determinant counted by a(n) is A033431(n) = 2*n^3.

Crossrefs

Cf. A058331 (distinct determinants for 2 X 2 matrices).
Cf. A365926.
Cf. A033431 (maximal determinant).
Cf. A097400 (distinct consecutive entries in 3 X 3 matrix).

Programs

  • Mathematica
    mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}]; flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]]; detMat[n_Integer?Positive] := detMat[n] = Det[mat[n]] // FullSimplify; a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[ParallelTable[Evaluate[detMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}]]]]; Table[a[3, n], {n, 0, 9}]
  • Python
    from itertools import product
    def A366158(n): return len({a[0]*(a[4]*a[8] - a[5]*a[7]) - a[1]*(a[3]*a[8] - a[5]*a[6]) + a[2]*(a[3]*a[7] - a[4]*a[6]) for a in product(range(n+1),repeat=9)}) # Chai Wah Wu, Oct 06 2023

Extensions

a(19)-a(26) from Robin Visser, May 08 2025
a(27)-a(33) from Robin Visser, Aug 26 2025

A367978 Number of distinct characteristic polynomials for 4 X 4 matrices with entries from {0, 1, ..., n}.

Original entry on oeis.org

1, 333, 58335, 2875405, 47125558
Offset: 0

Views

Author

Robert P. P. McKone, Dec 07 2023

Keywords

Crossrefs

Cf. A366448 (2 X 2 matrices), A366551 (3 X 3 matrices).
Cf. A272659.

Programs

  • Mathematica
    mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}];
    flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]];
    charPolyMat[n_Integer?Positive] := charPolyMat[n] = FullSimplify[CoefficientList[Expand[CharacteristicPolynomial[mat[n], x]], x]];
    a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[Table[Evaluate[charPolyMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}], d^2 - 1]]];
    Table[a[4, n], {n, 0, 2}]
  • Sage
    import itertools
    def a(n):
        ans, W = set(), itertools.product(range(n+1), repeat=16)
        for w in W: ans.add(Matrix(ZZ, 4, 4, w).charpoly())
        return len(ans)  # Robin Visser, May 04 2025

Extensions

a(4) from Robin Visser, May 04 2025

A306795 Number of distinct real eigenvalues of n X n matrices with elements {0, 1, 2}.

Original entry on oeis.org

3, 25, 657, 112870
Offset: 1

Views

Author

Steven E. Thornton, Mar 10 2019

Keywords

Crossrefs

Number of eigenvalues is in A306792.
Number of characteristic polynomials is in A272659.
Number of minimal polynomials is in A306783.

A306818 Number of non-derogatory n X n matrices with elements {0, 1, 2}.

Original entry on oeis.org

3, 78, 19068, 42300060
Offset: 1

Views

Author

Steven E. Thornton, Mar 11 2019

Keywords

Crossrefs

Number of characteristic polynomials is in A272659.
Number of minimal polynomials is in A306783.
Previous Showing 11-14 of 14 results.