cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A301469 Signed recurrence over enriched r-trees: a(n) = 2 * (-1)^n + Sum_y Product_{i in y} a(y) where the sum is over all integer partitions of n - 1.

Original entry on oeis.org

2, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 3, 3, 6, 7, 11, 17, 23, 35, 53, 75, 119, 173, 264, 398, 603, 911, 1411, 2114, 3279, 4977, 7696, 11760, 18253, 27909, 43451, 66675, 103945, 160096, 249904, 385876, 603107, 933474, 1461967, 2266384, 3553167, 5521053, 8664117, 13485744
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=2(-1)^n+Sum[Times@@a/@y,{y,IntegerPartitions[n-1]}];
    Array[a,30]

Formula

O.g.f.: 2/(1 + x) + x Product_{i > 0} 1/(1 - a(i) x^i).
a(n) = Sum_t 2^k * (-1)^w where the sum is over all enriched r-trees of size n, k is the number of leaves, and w is the sum of leaves.

A295635 Write 2 - Zeta(s) in the form 1/Product_{n > 1}(1 + a(n)/n^s).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 6, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 12, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 10, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 6, 2, 1, 16, 2, 2
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    -Solve[Table[-1==Sum[Times@@a/@f,{f,facs[n]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

A295636 Write 2 - Zeta(s) in the form Product_{n > 1}(1 - a(n)/n^s).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 8, 1, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 8, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 1, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 8, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 3, 2, 1, 16, 2, 2, 2
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    -Solve[Table[-1==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

Formula

a(n) = Sum_t (-1)^(v(t)-1) where the sum is over all strict tree-factorizations of n (see A295279 for definition) and v(t) is the number of nodes (branchings and leaves) in t.

A290320 Write 1 - t * x/(1-x) as an inverse power product 1/(1+c(1)x) * 1/(1+c(2)x^2) * 1/(1+c(3)x^3) * ... The sequence is a regular triangle where T(n,k) is the coefficient of t^k in c(n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 3, 4, 2, 0, 0, 1, 3, 5, 5, 3, 1, 0, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 9, 13, 13, 9, 4, 1, 0, 1, 5, 14, 25, 30, 24, 12, 3, 0, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 6, 21, 48, 75, 81, 60, 30, 10, 2, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2017

Keywords

Comments

An irregular triangle with only the nonzero coefficients is given by A290262.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  0;
  1,  2,  2,  1;
  1,  2,  2,  1,  0;
  1,  3,  4,  2,  0,  0;
  1,  3,  5,  5,  3,  1,  0;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  4,  9, 13, 13,  9,  4,  1,  0;
  1,  5, 14, 25, 30, 24, 12,  3,  0,  0;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1,  0;
  1,  6, 21, 48, 75, 81, 60, 30, 10,  2,  0,  0;
		

Crossrefs

Programs

  • Mathematica
    nn=12;Solve[Table[Expand[SeriesCoefficient[Product[1/(1+c[k]x^k),{k,n}],{x,0,n}]]==-t,{n,nn}],Table[c[n],{n,nn}]][[1,All,2]]

A305610 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} binomial(a(n/d) + d - 1, d).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 2, 0, 6, 3, 2, 11, 2, 3, 12, 0, 2, 38, 2, 11, 14, 3, 2, 90, 8, 3, 68, 11, 2, 127, 2, 0, 18, 3, 16, 1194, 2, 3, 20, 90, 2, 173, 2, 11, 644, 3, 2, 5158, 10, 68, 24, 11, 2, 12762, 20, 90, 26, 3, 2, 12910, 2, 3, 1386, 0, 22, 289, 2, 11, 30, 219, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[Binomial[a[n/d]+d-1,d],{d,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305610(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,binomial(A305610(n/d)+d-1, d)))); \\ Antti Karttunen, Dec 05 2021
Previous Showing 11-15 of 15 results.