cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A277100 Irregular triangle read by rows: T(n,k) is the number of partitions of n having k distinct parts i (i>=2) of multiplicity i-1 (n>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 5, 2, 7, 4, 10, 5, 15, 6, 1, 21, 8, 1, 28, 13, 1, 37, 18, 1, 50, 25, 2, 67, 31, 3, 88, 42, 5, 115, 55, 6, 150, 73, 8, 193, 93, 11, 248, 122, 15, 317, 154, 19, 402, 200, 24, 1, 508, 253, 30, 1, 640, 320, 41, 1, 802, 399, 53, 1, 1002, 503, 69, 1
Offset: 0

Views

Author

Emeric Deutsch, Oct 10 2016

Keywords

Comments

Sum of entries in row n is A000041(n) (the partition numbers).
T(n,0) = A277102(n).
Sum(k*T(n,k), k>=0) = A277101(n).

Examples

			The partition [1,1,2,3,3,3,3,4,4,4] has 2 parts i of multiplicity i-1: 2 and 4.
T(5,1) = 2, counting [1,1,1,2] and [2,3].
T(8,2) = 1, counting [2,3,3].
Triangle starts:
1;
1;
1, 1;
2, 1;
4, 1;
5, 2;
7, 4;
...
		

Crossrefs

Programs

  • Maple
    g := mul((t-1)*x^(i*(i+1))+1/(1-x^(i+1)), i = 1 .. 100)/(1-x): gser := simplify(series(g, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 30 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(i-1=j, x, 1)*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Oct 10 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i-1 == j, x, 1]*b[n-i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 08 2016 after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{i>=1} ((t-1)*x^(i(i+1)) + 1/(1-x^(i+1))).

A277102 Number of partitions of n containing no part i of multiplicity i-1.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 10, 15, 21, 28, 37, 50, 67, 88, 115, 150, 193, 248, 317, 402, 508, 640, 802, 1002, 1248, 1545, 1908, 2351, 2887, 3532, 4313, 5251, 6377, 7724, 9334, 11254, 13541, 16253, 19473, 23286, 27791, 33100, 39362, 46723, 55370, 65504, 77377, 91257, 107477, 126380
Offset: 0

Views

Author

Emeric Deutsch, Oct 10 2016

Keywords

Examples

			a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.
		

Crossrefs

Programs

  • Maple
    g := (product(1/(1-x^(i+1))-x^(i*(i+1)), i = 1 .. 100))/(1-x): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(i-1=j, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 10 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[If[i-1 == j, 0, b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 11 2016 after Alois P. Heinz *)

Formula

a(n) = A277100(n,0).
G.f.: g(x) = Product_{i>=1}(1/(1-x^(i+1)) - x^(i(i+1))).

A336269 Number of compositions of n containing no part p of multiplicity p.

Original entry on oeis.org

1, 0, 2, 2, 5, 11, 18, 36, 84, 155, 305, 625, 1269, 2487, 5070, 10263, 20964, 41905, 84799, 170540, 346192, 696157, 1405156, 2822998, 5686402, 11420892, 22949684, 46028648, 92347798, 185051670, 370756866, 742307736, 1485798060, 2972924906, 5947567564
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(`if`(i=j, 0, b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0,
         Sum[If[i == j, 0, b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)

Formula

a(n) = A011782(n) - A336273(n).

A282249 Number of representations of n as a sum of products of pairs of positive integers: n = Sum_{k=1..m} i_k*j_k with m >= 0, i_k < j_k, j_k > j_{k+1} and all factors distinct.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 4, 4, 6, 5, 6, 8, 8, 9, 11, 10, 14, 15, 14, 14, 21, 18, 21, 25, 25, 30, 34, 33, 42, 45, 41, 55, 62, 58, 66, 79, 76, 94, 95, 97, 115, 131, 120, 148, 153, 159, 175, 203, 189, 226, 232, 243, 268, 299, 271, 340, 349, 363, 389
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2017

Keywords

Comments

Or number of partitions of n where part i has multiplicity < i and all multiplicities are distinct and different from all parts.

Examples

			a(0) = 1: the empty sum.
a(6) = 2: 1*6 = 2*3.
a(8) = 2: 1*8 = 2*4.
a(10) = 3: 1*10 = 2*5 = 1*4+2*3.
a(11) = 3: 1*11 = 1*5+2*3 = 2*4+1*3.
a(12) = 4: 1*12 = 2*6 = 1*6+2*3 = 3*4.
a(13) = 4: 1*13 = 1*7+2*3 = 2*5+1*3 = 1*5+2*4.
a(14) = 6: 1*14 = 1*8+2*3 = 2*7 = 1*6+2*4 = 2*5+1*4 = 3*4+1*2.
a(15) = 5: 1*15 = 1*9+2*3 = 1*7+2*4 = 2*6+1*3 = 3*5.
a(25) = 14: 1*25 = 1*19+2*3 = 1*17+2*4 = 1*15+2*5 = 1*13+2*6 = 1*13+3*4 = 2*11+1*3 = 1*11+2*7 = 2*10+1*5 = 1*10+3*5 = 2*9+1*7 = 1*9+2*8 = 3*7+1*4 = 1*7+3*6.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember;
          (((2*n+3)*n-2)*n-`if`(n::odd, 3, 0))/12
        end:
    g:= (n, i, s)-> `if`(n=0, 1, `if`(n>h(i), 0,
                    b(n, i, select(x-> x<=i, s)))):
    b:= proc(n, i, s) option remember; g(n, i-1, s)+
         `if`(i in s, 0, add(`if`(j in s, 0, g(n-i*j,
          min(n-i*j, i-1), s union {j})), j=1..min(i-1, n/i)))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = (((2*n + 3)*n - 2)*n - If[OddQ[n], 3, 0])/12;
    g[n_, i_, s_] := If[n==0, 1, If[n>h[i], 0, b[n, i, Select[s, # <= i&]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + If[MemberQ[s, i], 0, Sum[If[MemberQ[s, j], 0, g[n - i*j, Min[n - i*j, i - 1], s ~Union~ {j}]], {j, 1, Min[i - 1, n/i]}]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 01 2018, after Alois P. Heinz *)

A282379 Number of representations of n as a sum of products of pairs of positive integers: n = Sum_{k=1..m} i_k*j_k with m >= 0, i_k <= j_k, j_k > j_{k+1} and all factors distinct with the exception that i_k = j_k is allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 5, 9, 9, 8, 11, 15, 13, 17, 17, 19, 24, 29, 23, 33, 37, 39, 40, 53, 48, 62, 63, 71, 77, 94, 81, 110, 116, 122, 123, 156, 152, 185, 180, 200, 213, 259, 236, 287, 298, 325, 333, 404, 386, 450, 457, 506, 531, 615, 579, 679, 721
Offset: 0

Views

Author

Alois P. Heinz, Feb 13 2017

Keywords

Examples

			a(4) = 2: 1*4 = 2*2.
a(5) = 2: 1*5 = 2*2+1*1.
a(6) = 2: 1*6 = 2*3.
a(7) = 3: 1*7 = 2*3+1*1 = 1*3+2*2.
a(8) = 3: 1*8 = 2*4 = 1*4+2*2.
a(9) = 4: 1*9 = 1*5+2*2 = 2*4+1*1 = 3*3.
a(10) = 5: 1*10 = 1*6+2*2 = 2*5 = 1*4+2*3 = 3*3+1*1.
a(11) = 6: 1*11 = 1*7+2*2 = 2*5+1*1 = 1*5+2*3 = 2*4+1*3 = 3*3+1*2.
a(12) = 5: 1*12 = 1*8+2*2 = 2*6 = 1*6+2*3 = 3*4.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember;
          n*(n+1)*(2*n+1)/6
        end:
    g:= (n, i, s)-> `if`(n=0, 1, `if`(n>h(i), 0,
                    b(n, i, select(x-> x<=i, s)))):
    b:= proc(n, i, s) option remember; g(n, i-1, s)+
         `if`(i in s, 0, add(`if`(j in s, 0, g(n-i*j,
          min(n-i*j, i-1), s union {j})), j=1..min(i, n/i)))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = n(n+1)(2n+1)/6;
    g[n_, i_, s_ ] := If[n == 0, 1, If[n > h[i], 0,
         b[n, i, Select[s, # <= i&]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] +
         If[MemberQ[s, i], 0, Sum[If[MemberQ[s, j], 0, g[n - i*j,
         Min[n - i*j, i - 1], s ~Union~ {j}]], {j, 1, Min[i, n/i]}]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 01 2021, after Alois P. Heinz *)

A328806 Row lengths of A276427: largest k such that a partition of n has k-1 distinct parts i of multiplicity i.

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

M. F. Hasler, Oct 27 2019

Keywords

Comments

Columns of A276427 are numbered starting with 0, so the row length is one more than the index of the last column.

Examples

			For n = 0, the empty partition [] has 0 parts i with multiplicity i, so a(0) = 1.
For n = 1, the partition [1] has one part i with multiplicity i, whence a(1) = 2.
For n = 2, both partitions [1,1] and [2] have 0 parts i with multiplicity i, so a(2) = 1.
For n = 3, the partition [1,2] has one part i with multiplicity i, hence a(3) = 2.
For n = 4, the partitions [1,3] and [2,2] have one part i with multiplicity i, so a(4) = 2.
For n = 5, the partition [1,2,2] has 2 parts i with multiplicity i, hence a(5) = 3.
The smallest partition with k-1 = 3 parts i with multiplicity i is [1,2,2,3,3,3], for n = 14, whence a(14) = 4.
		

Crossrefs

Programs

Extensions

More terms from Alois P. Heinz, Oct 28 2019

A328891 Irregular table T(n,k) = #{m > 0: m occurs m times in the k-th partition of n, using A&S order (A036036)}, 1 <= k <= A000041(n), n >= 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

M. F. Hasler, Oct 29 2019

Keywords

Comments

In the n-th row, the partitions of n are considered in the "Abramowitz and Stegun" or graded (reflected or not) colexicographic ordering, as in A036036 or A036037. For each partition this counts the numbers m > 0 such that there are exactly m parts equal to m in the partition.
Row lengths are A000041(n) = number of partitions of n, the partition numbers.

Examples

			The table reads:
  n \ T(n,k), ...
  0 : 0;   (The only partition of 0 is [], having no number at all in it.)
  1 : 1;   (The only partition of 1 is [1], in which the number m=1 occurs 1 time.)
  2 : 0,0;   (Neither [2] nor [1,1] have some m occurring m times.)
  3 : 0,1,0;   ([3] and [1,1,1] have no m, but [1,2] has m=1 occurring m times.)
  4 : 0,1,1,0,0;   (Here [1,3] and [2,2] have m=1 resp. m=2 occurring m times.)
  5 : 0,1,0,0,2,0,0;   ([1,4] has m=1, [1,2,2] has m=1 and m=2 occurring m times.)
  6 : 0,1,0,0,0,1,0,0,1,0,0;
  7 : 0,1,0,0,0,1,1,1,0,0,1,0,1,0,0;
  (...)
Column 1 = (0,1,0,...) = A063524, characteristic function of {1}: The corresponding partition is [n], except for [] when n=0.
Column 2 = (0,1,1,1,...) = signum(n-2) = A057427(n-2), n >= 2: The corresponding partition is [1, n-1].
Column 3 = A063524(n-3) = A185014(n), characteristic function of {4}: The corresponding partition is [2, n-2] for n >= 4, and [1,1,1] for n = 3.
Column 4 = (0,...) = A000004(n-4), the zero function: The corresponding partition is [3, n-3] for n >= 6, and [1,1,2] for n = 4 and [1,1,3] for n = 5.
Row sums = A276428(n) = sum over all partitions of n of the number of distinct parts m of multiplicity m.
		

Crossrefs

Cf. A036036 (list of partitions in Abramowitz & Stegun or graded reflected colexicographic order).
Cf. A000041 (partition numbers = row lengths).
Cf. A063524 (col.1: chi_{1}), A057427 (col.2: signum), A185014 (col.3: chi_{4}), A000004 (col.4: zero).
Cf. A276427 (frequency of 0, ..., max.value in each row), A276428 (row sums), A276429, A276434, A277101.
Cf. A328806 (row length of A276427(n) = 1 + largest value in row n).

Programs

  • PARI
    apply( A328891_row(n, r=[])={forpart(p=n, my(s, c=1); for(i=1, #p, p[i]==if(i<#p, p[i+1]) && c++ && next; c==p[i] && s++; c=1); r=concat(r,s));r}, [0..12])
Previous Showing 11-17 of 17 results.