cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A056369 Number of primitive (period n) bracelet structures using exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 16, 85, 434, 2270, 11530, 58397, 290689, 1436669, 7036417, 34286379, 166316979, 804556969, 3884248150, 18731031687, 90269841908, 434955103451, 2096028083116, 10104206843502
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A276543.
Cf. A056306.

Formula

A056370 Number of primitive (period n) bracelet structures using exactly six different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 27, 171, 1249, 8389, 56078, 360430, 2272598, 14037552, 85516427, 514976658, 3074986236, 18239677629, 107654218055, 632996894925, 3711499485032, 21716765203045, 126880009551584
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A276543.
Cf. A056307.

Formula

A276548 Number of primitive (period n) bracelet structures using an infinite alphabet.

Original entry on oeis.org

1, 1, 2, 5, 11, 33, 92, 347, 1347, 6338, 31949, 179265, 1071264, 6845487, 46162569, 327731596, 2437753739, 18948597836, 153498350744, 1293123237572, 11306475314372, 102425554267565, 959826755336241, 9290811905211847
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Crossrefs

Row sums of A276543.
Cf. A084708.

Programs

  • Mathematica
    u[0, ] = 1; u[k, j_] := u[k, j] = Sum[Binomial[k - 1, i - 1] Total[u[k - i, j] #^(i - 1) & /@ Divisors[j]], {i, k}];
    b[n_] := 1/n*Total[EulerPhi[#] u[Quotient[n, #], #]& /@ Divisors[n] ];
    A084708[n_] := b[n]/2 + If[EvenQ[n], u[n/2, 2], Sum[Binomial[n/2 - 1/2, k] u[k, 2], {k, 0, n/2 - 1/2}]]/2;
    a[n_] := Sum[MoebiusMu[n/d]*A084708[d], {d, Divisors[n]}];
    Array[a, 24] (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd and Wouter Meeussen *)

Formula

a(n) = Sum_{d|n} mu(n/d) * A084708(d).

A056366 Number of primitive (period n) bracelet structures using exactly two different colored beads.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, 189, 352, 607, 1144, 2055, 3885, 7154, 13602, 25472, 48670, 92204, 176770, 337590, 649341, 1246840, 2404872, 4636389, 8964143, 17334800
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure. Identical to A000046 for n>1.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A276543.
Cf. A056303.

Formula

A000046(n)-A000007(n-1).
Previous Showing 11-14 of 14 results.