cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A378457 Difference between n and the greatest prime power <= n, allowing 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 0, 1, 2, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2024

Keywords

Comments

Prime powers allowing 1 are listed by A000961.

Examples

			The greatest prime power <= 6 is 5, so a(6) = 1.
		

Crossrefs

Sequences obtained by subtracting each term from n are placed in parentheses below.
For nonprime we have A010051 (almost) (A179278).
Subtracting from n gives (A031218).
For prime we have A064722 (A007917).
For perfect power we have A069584 (A081676).
For squarefree we have (A070321).
Adding one gives A276781.
For nonsquarefree we have (A378033).
For non perfect power we have (A378363).
For non prime power we have A378366 (A378367).
The opposite is A378370 = A377282-1.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n, weak version A007918.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[n-NestWhile[#-1&,n,#>1&&!PrimePowerQ[#]&],{n,100}]

Formula

a(n) = n - A031218(n).
a(n) = A276781(n) - 1.

A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).

Original entry on oeis.org

1, 0, 4, 5, 1, 2, 12, 11, 12, 31, 3, 1, 32, 59, 11, 25, 46, 13, 125, 14, 80, 88, 94, 103, 52, 261, 35, 267, 147, 172, 120, 9, 9, 163, 355, 279, 313, 207, 329, 347, 376, 108, 257, 805, 283, 262, 25, 917, 242, 1081, 702, 365, 752, 389, 251, 535, 1679, 877, 447
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2024

Keywords

Comments

The inclusive version is a(n) + 2.
Nonprime prime powers (A246547) begin: 4, 8, 9, 16, 25, 27, 32, 49, ...

Examples

			The initial terms count the following composite numbers:
  {6}, {}, {10,12,14,15}, {18,20,21,22,24}, {26}, {28,30}, ...
The composite numbers for a(77) = 6 together with their prime indices are the following. We have also shown the nonprime prime powers before and after:
  32761: {42,42}
  32762: {1,1900}
  32763: {2,19,38}
  32764: {1,1,1028}
  32765: {3,847}
  32766: {1,2,14,31}
  32767: {4,11,36}
  32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

For prime instead of composite we have A067871.
For nonsquarefree numbers we have A378373, for primes A236575.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A002808 lists the composite numbers.
A031218 gives the greatest prime-power <= n.
A046933 counts composite numbers between primes.
A053707 gives first differences of nonprime prime powers.
A080101 = A366833 - 1 counts prime powers between primes.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the nearest prime power after prime(n) + 1, difference A377281.
Cf. A377286, A377287, A377288 (primes A053706).

Programs

  • Mathematica
    nn=1000;
    v=Select[Range[nn],PrimePowerQ[#]&&!PrimeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A378366 Difference between n and the greatest non prime power <= n (allowing 1).

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Crossrefs

Sequences obtained by subtracting each term from n are placed in parentheses below.
For nonprime we almost have A010051 (A179278).
For prime we have A064722 (A007917).
For perfect power we have A069584 (A081676).
For squarefree we have (A070321).
For prime power we have A378457 = A276781-1 (A031218).
For nonsquarefree we have (A378033).
For non perfect power we almost have A075802 (A378363).
Subtracting from n gives (A378367).
The opposite is A378371, adding n A378372.
A000015 gives the least prime power >= n (cf. A378370 = A377282 - 1).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n, weak version A007918.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[n-NestWhile[#-1&,n,PrimePowerQ[#]&],{n,100}]

Formula

a(n) = n - A378367(n).

A342766 a(1) = 1, for any n > 1, a(n) = A342765(a(n-1), n).

Original entry on oeis.org

1, 2, 3, 6, 10, 10, 14, 28, 42, 42, 66, 66, 78, 78, 78, 156, 204, 204, 228, 228, 228, 228, 276, 276, 460, 460, 690, 690, 870, 870, 930, 1860, 1860, 1860, 1860, 1860, 2220, 2220, 2220, 2220, 2460, 2460, 2580, 2580, 2580, 2580, 2820, 2820, 3948, 3948, 3948, 3948
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

This sequence has similarities with A087052.
This sequence is nondecreasing.
A new value is introduced at each power of prime (A000961).
The ordinal transform of the sequence is A276781.
The RUNS transform of the sequence is A057820.

Examples

			The first terms, alongside their prime factorizations, are:
  n   a(n)  n          a(n)
  --  ----  ---------  ----------
   1     1          1           1
   2     2          2           2
   3     3          3           3
   4     6      2 * 2       2 * 3
   5    10          5       2 * 5
   6    10      2 * 3       2 * 5
   7    14          7       2 * 7
   8    28  2 * 2 * 2   2 * 2 * 7
   9    42      3 * 3   2 * 3 * 7
  10    42      2 * 5   2 * 3 * 7
  11    66         11   2 * 3 * 11
  12    66  2 * 2 * 3   2 * 3 * 11
		

Crossrefs

Programs

  • PARI
    See Links section.

A378614 Number of composite numbers (A002808) between consecutive perfect powers (A001597), exclusive.

Original entry on oeis.org

0, 1, 0, 4, 5, 1, 2, 3, 8, 11, 12, 15, 15, 3, 1, 12, 19, 21, 16, 7, 12, 11, 25, 29, 16, 13, 32, 33, 35, 22, 14, 40, 39, 42, 45, 46, 47, 50, 52, 32, 19, 55, 56, 59, 60, 27, 35, 65, 64, 67, 68, 40, 30, 75, 74, 77, 19, 57, 62, 9, 9, 81, 81, 88, 89, 87, 32, 55, 94
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

The inclusive version is a(n) + 2.

Examples

			The composite numbers counted by a(n) cover A106543 with the following disjoint sets:
  .
  6
  .
  10 12 14 15
  18 20 21 22 24
  26
  28 30
  33 34 35
  38 39 40 42 44 45 46 48
  50 51 52 54 55 56 57 58 60 62 63
		

Crossrefs

For prime instead of perfect power we have A046933.
For prime instead of composite we have A080769.
For nonsquarefree instead of perfect power we have A378373, for primes A236575.
For nonprime prime power instead of perfect power we have A378456.
A001597 lists the perfect powers, differences A053289.
A002808 lists the composite numbers.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A106543 lists the composite non perfect powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378365 gives the least prime > each perfect power, opposite A377283.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    v=Select[Range[100],perpowQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
  • Python
    from sympy import mobius, integer_nthroot, primepi
    def A378614(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        return -(a:=bisection(f,n,n))+(b:=bisection(lambda x:f(x)+1,a+1,a+1))-primepi(b)+primepi(a)-1 # Chai Wah Wu, Dec 03 2024
Previous Showing 21-25 of 25 results.