A277204 Number of chromatic symmetric functions realizable from exactly one graph on n vertices.
1, 2, 4, 11, 33, 146, 846, 9807, 229972
Offset: 1
Crossrefs
Cf. A277203.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The a(3) = 5 chromatic symmetric functions: m(111) m(21) + m(111) 2m(21) + m(111) 3m(21) + m(111) m(3) + 3m(21) + m(111)
chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; hyps[n_]:=Select[stableSets[Rest[Subsets[Range[n]]],SubsetQ],Union@@#==Range[n]&]; Table[Length[Union[chromSF/@hyps[n]]],{n,5}]
The a(3) = 25 stable partitions of antichains on 3 vertices. The antichain is on top, and below is a list of all its stable partitions. {1}{2}{3} {1,2,3} {1}{2,3} {1,3}{2} {1,2}{3} -------- -------- -------- -------- -------- {{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1},{2,3}} {{1},{2,3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2},{3}} {{1,3},{2}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} . {1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3} -------- -------- -------- -------- {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Sum[Length[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ]],{stn,sps[Range[n]]}],{n,5}]
The a(3) = 11 stable partitions. The connected antichain is on top, and below is a list of all its stable partitions. {1,2,3} {1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3} -------- -------- -------- -------- -------- {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}}
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Sum[Length[Select[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]
The a(3) = 8 e-positive antichains: {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1},{2},{3}} {{1,2},{1,3},{2,3}} The antichain {{1,2,3}} is not e-positive, as its chromatic symmetric function is -3e(3) + 3e(21).
Comments