cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A137146 Numbers k such that k and k^2 use only the digits 5, 6, 7 and 8.

Original entry on oeis.org

76, 766, 7666, 76666, 766666, 7666666, 76666666, 766666666, 7666666666, 76666666666, 766666666666, 7666666666666, 76666666666666, 766666666666666, 7666666666666666, 76666666666666666, 766666666666666666, 7666666666666666666, 76666666666666666666, 766666666666666666666
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
The first digit of each term is either 7 or 8 and the last digit is 6. - Chai Wah Wu, May 25 2021

Examples

			766666666666666^2 = 587777777777776755555555555556.
		

Crossrefs

Cf. A000290 (the squares); A136808, A136809, ..., A137147 for other digit combinations.
Cf. A058469 - A058472 and A058411, ..., A058474 for other digit combinations.
Cf. A277959, A277960, A277961, A295005, ..., A295009 (squares with largest digit = 2, 3, 4, 5, ..., 9).

Programs

  • Python
    from itertools import product
    A137146_list = [n for n in (int(''.join(d)) for l in range(1,6) for d in product('5678',repeat=l)) if set(str(n**2)) <= set('5678')] # Chai Wah Wu, May 25 2021

Extensions

a(15)-a(20) from Pontus von Brömssen, Apr 12 2024

A295007 Numbers n such that the largest digit of n^2 is 7.

Original entry on oeis.org

24, 26, 42, 52, 61, 69, 74, 76, 82, 84, 85, 88, 124, 131, 132, 144, 154, 165, 166, 174, 181, 189, 194, 218, 224, 226, 234, 239, 240, 260, 265, 266, 269, 271, 274, 275, 276, 319, 326, 356, 371, 376, 384, 415, 416, 418, 419, 420, 421, 448, 455, 466, 474, 476, 520, 521, 524, 525, 526, 552
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Examples

			24 is in this sequence because 24^2 = 576 has 7 as largest digit.
		

Crossrefs

Cf. A295017 (the corresponding squares), A277959 .. A277961 (same for digit 2 .. 4), A295005 .. A295009 (same for digit 5 .. 9).
Cf. A000290 (the squares).

Programs

  • Maple
    filter:= proc(n) max(convert(n^2,base,10))=7 end proc:
    select(filter, [$1..1000]); # Robert Israel, Feb 19 2019
  • PARI
    select( is_A295007(n)=n&&vecmax(digits(n^2))==7 , [0..999]) \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = sqrt(A295017(n)), where sqrt = A000196 or A000194 or A003059.
Previous Showing 11-12 of 12 results.