cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A278220 Filtering sequence (related to prime factorization): a(n) = A046523(A241909(n)).

Original entry on oeis.org

1, 2, 4, 2, 8, 4, 16, 2, 6, 8, 32, 4, 64, 16, 12, 2, 128, 6, 256, 8, 24, 32, 512, 4, 12, 64, 6, 16, 1024, 12, 2048, 2, 48, 128, 36, 6, 4096, 256, 96, 8, 8192, 24, 16384, 32, 12, 512, 32768, 4, 24, 12, 192, 64, 65536, 6, 72, 16, 384, 1024, 131072, 12, 262144, 2048, 24, 2, 144, 48, 524288, 128, 768, 36, 1048576, 6, 2097152, 4096, 30, 256, 72, 96, 4194304, 8, 6, 8192
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A241909(n)).
a(n) = A278219(A075158(n-1)).

A336146 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000035(i) = A000035(j) and A000265(i) = A000265(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 5, 10, 11, 12, 2, 13, 14, 15, 8, 16, 17, 18, 5, 19, 20, 21, 11, 22, 23, 24, 2, 25, 26, 27, 14, 28, 29, 30, 8, 31, 32, 33, 17, 34, 35, 36, 5, 37, 38, 39, 20, 40, 41, 42, 11, 43, 44, 45, 23, 46, 47, 48, 2, 49, 50, 51, 26, 52, 53, 54, 14, 55, 56, 57, 29, 58, 59, 60, 8, 61, 62, 63, 32, 64, 65, 66, 17, 67, 68, 69, 35, 70, 71, 72, 5, 73, 74, 75, 38, 76, 77, 78, 20, 79
Offset: 1

Views

Author

Antti Karttunen, Jul 12 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000035(n), A000265(n)] (parity and the odd part of n), or equally, of the ordered pair [A000265(n), A278221(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336126(i) = A336126(j),
a(i) = a(j) => A336147(i) = A336147(j),
a(i) = a(j) => A336148(i) = A336148(j),
a(i) = a(j) => A336149(i) = A336149(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000035(n) = (n%2);
    A000265(n) = (n>>valuation(n,2));
    Aux336146(n) = [A000035(n), A000265(n)];
    v336146 = rgs_transform(vector(up_to, n, Aux336146(n)));
    A336146(n) = v336146[n];

A286454 Compound filter (prime signature & prime signature of conjugated prime factorization): a(n) = P(A101296(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 9, 12, 32, 23, 20, 13, 49, 38, 51, 47, 82, 49, 35, 68, 51, 80, 72, 124, 140, 122, 74, 18, 175, 26, 111, 155, 334, 192, 65, 257, 280, 82, 116, 255, 329, 355, 99, 327, 570, 380, 177, 72, 469, 437, 132, 31, 72, 532, 216, 498, 74, 257, 144, 599, 634, 597, 448, 632, 745, 159, 119, 784, 1044, 782, 331, 907, 570, 863, 186, 905, 1039, 72, 384, 140, 1335, 1037
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Comments

Here, instead of A046523 and A278221 we use as the components of a(n) their rgs-versions A101296 and A286621 because of the latter sequence's moderate growth rates.
For all i, j: a(i) = a(j) => A286356(i) = A286356(j).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n)+A286621(n))^2) - A101296(n) - 3*A286621(n)).

A286455 Compound filter (smallest prime dividing n & prime signature of conjugated prime factorization): a(n) = P(A055396(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 8, 2, 18, 11, 40, 2, 8, 22, 71, 11, 97, 46, 30, 2, 143, 11, 179, 22, 93, 92, 262, 11, 18, 121, 8, 46, 335, 154, 417, 2, 212, 211, 69, 11, 540, 254, 302, 22, 679, 326, 794, 92, 30, 379, 918, 11, 40, 22, 467, 121, 1051, 11, 234, 46, 530, 529, 1242, 154, 1344, 631, 93, 2, 744, 704, 1615, 211, 822, 326, 1790, 11, 1912, 904, 30, 254, 140, 947, 2167, 22, 8
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Comments

Note that as the other component of a(n) we use A286621 instead of A278221, because of latter sequence's unwieldy large terms.
For all i, j: a(i) = a(j) => A243055(i) = A243055(j).
For all i, j: a(i) = a(j) => A286470(i) = A286470(j).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A055396(n)+A286621(n))^2) - A055396(n) - 3*A286621(n)).

A279350 a(n) = A046523(A279352(n)).

Original entry on oeis.org

1, 2, 4, 2, 8, 6, 16, 2, 4, 12, 32, 6, 64, 24, 12, 2, 128, 6, 256, 12, 4, 48, 512, 6, 8, 96, 36, 24, 1024, 30, 2048, 2, 12, 192, 24, 6, 4096, 384, 72, 12, 8192, 60, 16384, 48, 4, 768, 32768, 6, 16, 12, 12, 96, 65536, 6, 8, 24, 36, 1536, 131072, 30, 262144, 3072, 144, 2, 72, 120, 524288, 192, 12, 60, 1048576, 6, 2097152, 6144, 288, 384, 48, 240, 4194304, 12, 72
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Formula

a(n) = A046523(A279352(n)).
a(n) = A278221(A249818(n)).

A285334 a(n) = A046523(A243505(n)).

Original entry on oeis.org

1, 2, 4, 8, 2, 16, 32, 6, 64, 128, 12, 256, 4, 2, 512, 1024, 24, 12, 2048, 48, 4096, 8192, 6, 16384, 8, 96, 32768, 36, 192, 65536, 131072, 12, 72, 262144, 384, 524288, 1048576, 6, 24, 2097152, 2, 4194304, 144, 768, 8388608, 72, 1536, 288, 16777216, 24, 33554432, 67108864, 30, 134217728, 268435456, 3072, 536870912, 576, 48, 216, 16, 6144, 4, 1073741824, 12288
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A243505(n)).
a(n) = A278221(A064216(n)).

A278525 Filtering sequence (related to prime factorization): a(n) = A046523(A241916(n)).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 6, 4, 2, 8, 2, 4, 6, 16, 2, 12, 2, 8, 6, 4, 2, 16, 6, 4, 12, 8, 2, 12, 2, 32, 6, 4, 6, 24, 2, 4, 6, 16, 2, 12, 2, 8, 12, 4, 2, 32, 6, 12, 6, 8, 2, 36, 6, 16, 6, 4, 2, 24, 2, 4, 12, 64, 6, 12, 2, 8, 6, 12, 2, 48, 2, 4, 30, 8, 6, 12, 2, 32, 24, 4, 2, 24, 6, 4, 6, 16, 2, 36, 6, 8, 6, 4, 6, 64, 2, 12, 12, 24, 2, 12, 2, 16, 30, 4, 2, 72, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A241916(n)).
Other identities. For all n:
a(2^n) = 2^n.
a(A000040(n)) = 2.

A336925 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336147(1+sigma(i)) = A336147(1+sigma(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 4, 8, 9, 2, 2, 1, 7, 10, 11, 12, 13, 14, 2, 15, 1, 12, 16, 17, 18, 19, 13, 1, 3, 20, 3, 21, 22, 15, 17, 23, 12, 24, 9, 25, 26, 19, 3, 2, 27, 28, 19, 13, 20, 29, 19, 29, 5, 23, 15, 4, 11, 24, 30, 1, 25, 31, 32, 33, 24, 31, 19, 6, 9, 34, 2, 35, 24, 4, 5, 36, 37, 33, 25, 9, 38, 39, 29, 40, 23, 41, 42, 4, 43, 31, 29, 44, 13, 45, 46, 47, 48, 49, 30
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the function f(n) = A336147(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336691(i) = A336691(j),
a(i) = a(j) => A336924(i) = A336924(j).

Crossrefs

Cf. also A336926.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    Aux336147(n) = [A020639(n),A278221(n)];
    v336925 = rgs_transform(vector(up_to, n, Aux336147(1+sigma(n))));
    A336925(n) = v336925[n];
Previous Showing 11-18 of 18 results.