cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A316210 Number of integer partitions of the n-th Fermi-Dirac prime into Fermi-Dirac primes.

Original entry on oeis.org

1, 1, 2, 2, 4, 7, 11, 17, 31, 37, 54, 109, 152, 283, 380, 878, 1482, 1906, 3101, 3924, 6197, 11915, 14703, 27063, 40016, 48450, 84633, 101419, 121250, 204461, 398916, 551093, 646073, 883626, 1030952, 1397083, 2522506, 3875455, 5128718, 7741307, 8860676
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(6) = 7 partitions of 9 into Fermi-Dirac primes are (9), (54), (72), (333), (432), (522), (3222).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1/(1-x^d),{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,FDprimeList[[n]]}],{n,Length[FDprimeList]}]

A316211 Number of strict integer partitions of n into Fermi-Dirac primes.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 4, 4, 4, 6, 4, 9, 5, 10, 8, 11, 11, 12, 15, 13, 19, 16, 21, 21, 24, 26, 27, 32, 31, 37, 37, 42, 44, 47, 52, 53, 61, 61, 69, 71, 78, 82, 88, 95, 99, 108, 112, 122, 128, 137, 144, 154, 163, 172, 184, 193, 206, 216, 230, 242, 256
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(16) = 9 strict integer partitions of 16 into Fermi-Dirac primes:
(16),
(9,7), (11,5), (13,3),
(7,5,4), (9,4,3), (9,5,2), (11,3,2),
(7,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1+x^d,{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

O.g.f.: Product_d (1 + x^d) where the product is over all Fermi-Dirac primes (A050376).

A322028 Number of distinct orders of primeness among the prime factors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

The order of primeness (A078442) of a prime number p is the number of times one must apply A000720 to obtain a nonprime number.

Examples

			a(105) = 3 because the prime factors of 105 = 3*5*7 have 3 different orders of primeness, namely 2, 3, and 1 respectively.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    p:= proc(n) option remember;
          `if`(isprime(n), 1+p(pi(n)), 0)
        end:
    a:= n-> nops(map(p, factorset(n))):
    seq(a(n), n=1..120);  # Alois P. Heinz, Nov 24 2018
  • Mathematica
    Table[If[n==1,0,Length[Union[Length[NestWhileList[PrimePi,PrimePi[#],PrimeQ]]&/@FactorInteger[n][[All,1]]]]],{n,100}]

A299758 Largest FDH number of a strict integer partition of n.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 24, 30, 42, 60, 120, 168, 216, 280, 420, 840, 1080, 1512, 1890, 2520, 3780, 7560, 9240, 11880, 16632, 20790, 27720, 41580, 83160, 98280, 120960, 154440, 216216, 270270, 360360, 540540, 1081080, 1330560, 1572480, 1921920, 2471040, 3459456, 4324320
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions realizing each maximum begins: () (1) (2) (21) (31) (32) (321) (421) (521) (432) (4321) (5321) (6321) (5431) (5432) (54321) (64321) (65321) (65421) (65431) (65432).
		

Crossrefs

Programs

  • Mathematica
    nn=150;
    FDprimeList=Select[Range[nn],MatchQ[FactorInteger[#],{{?PrimeQ,?(MatchQ[FactorInteger[2#],{{2,_}}]&)}}]&];
    Table[Max[Times@@FDprimeList[[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,Length[FDprimeList]}]

A316094 FDH numbers of strict integer partitions with odd parts.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 14, 16, 19, 22, 25, 28, 31, 32, 38, 41, 44, 47, 50, 53, 56, 61, 62, 64, 71, 76, 77, 79, 82, 83, 88, 94, 97, 100, 101, 103, 106, 107, 109, 112, 113, 121, 122, 124, 127, 128, 131, 133, 137, 139, 142, 149, 151, 152, 154, 157, 158, 163, 164, 166
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2018

Keywords

Comments

Also numbers n such that A305829(n) is odd.
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of all integer partitions with distinct odd parts begins (), (1), (3), (5), (3,1), (7), (5,1), (9), (11), (7,1), (13), (5,3), (15), (9,1), (11,1), (17), (7,3), (19), (13,1), (21), (5,3,1), (23), (15,1), (9,3), (25), (11,3), (7,5), (27), (17,1), (29), (7,3,1), (19,1), (31).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],OddQ[Times@@(FDfactor[#]/.FDrules)]&]

A316264 FDH numbers of strict integer partitions with odd length and all odd parts.

Original entry on oeis.org

2, 4, 7, 11, 16, 19, 25, 31, 41, 47, 53, 56, 61, 71, 79, 83, 88, 97, 101, 103, 107, 109, 113, 121, 127, 128, 131, 137, 139, 149, 151, 152, 154, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 200, 211, 223, 224, 227, 229, 233, 239, 241, 248, 251, 257
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of all strict odd integer partitions begins (1), (3), (5), (7), (9), (11), (13), (15), (17), (19), (21), (1,3,5), (23), (25), (27), (29), (1,3,7), (31).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And[OddQ[Length[FDfactor[#]]],OddQ[Times@@(FDfactor[#]/.FDrules)]]&]
Previous Showing 11-16 of 16 results.