cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A301765 Number of rooted twice-partitions of n where the first rooted partition is constant and the composite rooted partition is strict, i.e., of type (Q,R,Q).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 8, 7, 11, 11, 19, 16, 27, 23, 42, 33, 63, 47, 87, 71, 119, 90, 195
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(9) = 8 rooted twice-partitions:
(7), (61), (52), (43), (421),
(3)(21), (21)(3),
()()()()()()()().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],SameQ@@Total/@#&&UnsameQ@@Join@@#&]//Length,{n,20}]

A302591 One, powers of 2, and prime numbers of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 13, 16, 17, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 83, 101, 109, 113, 127, 128, 137, 139, 149, 157, 163, 167, 179, 181, 191, 199, 211, 233, 241, 256, 257, 269, 271, 277, 283, 293, 313, 317, 331, 347, 349, 353, 367, 373, 389, 397, 401
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
11: {{3}}
13: {{1,2}}
16: {{},{},{},{}}
17: {{4}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
59: {{7}}
64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],Or[#===1,Union[primeMS[#]]==={1},PrimeQ[#]&&SquareFreeQ[PrimePi[#]]]&]
  • PARI
    ok(n)={n>>valuation(n,2) == 1 || (isprime(n) && issquarefree(primepi(n)))} \\ Andrew Howroyd, Aug 26 2018

Formula

Union of A000079 and A302491. - Andrew Howroyd, Aug 26 2018

A302592 One, powers of 2, and prime numbers of prime index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 16, 17, 31, 32, 41, 59, 64, 67, 83, 109, 127, 128, 157, 179, 191, 211, 241, 256, 277, 283, 331, 353, 367, 401, 431, 461, 509, 512, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1024, 1031, 1063, 1087, 1153, 1171
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
001: {}
002: {{}}
003: {{1}}
004: {{},{}}
005: {{2}}
008: {{},{},{}}
011: {{3}}
016: {{},{},{},{}}
017: {{4}}
031: {{5}}
032: {{},{},{},{},{}}
041: {{6}}
059: {{7}}
064: {{},{},{},{},{},{}}
067: {{8}}
083: {{9}}
109: {{10}}
127: {{11}}
128: {{},{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Or[#===1,Union[primeMS[#]]==={1},PrimeQ[#]&&PrimeQ[PrimePi[#]]]&]
  • PARI
    ok(n)={n>>valuation(n,2) == 1 || (isprime(n) && isprime(primepi(n)))} \\ Andrew Howroyd, Aug 26 2018

Formula

Union of A000079 and A006450. - Andrew Howroyd, Aug 26 2018
Previous Showing 11-13 of 13 results.