cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 107 results. Next

A305565 Regular triangle where T(n,k) is the number of finite sets of positive integers with least common multiple n and greatest common divisor k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 7, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 32, 7, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			The T(12,2) = 7 sets are {2,12}, {4,6}, {2,4,6}, {2,4,12}, {2,6,12}, {4,6,12}, {2,4,6,12}.
Triangle begins:
   1
   1  1
   1  0  1
   2  1  0  1
   1  0  0  0  1
   7  1  1  0  0  1
   1  0  0  0  0  0  1
   4  2  0  1  0  0  0  1
   2  0  1  0  0  0  0  0  1
   7  1  0  0  1  0  0  0  0  1
   1  0  0  0  0  0  0  0  0  0  1
  32  7  2  1  0  1  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],And[GCD@@#==k,LCM@@#==n]&]],{n,20},{k,n}]

Formula

If k divides n then T(n,k) = T(n/k,1) = A305564(n/k); otherwise T(n,k) = 0.

A319762 Number of non-isomorphic intersecting set multipartitions (multisets of sets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 4, 9, 24
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A set multipartition is intersecting if no two parts are disjoint. The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(9) = 9 set multipartitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3,4},{2,3,4}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,4},{1,2,5},{3,4,5}}
   {{1,2},{1,3},{2,3},{2,3}}
9: {{1,3},{1,4,5},{2,3,4,5}}
   {{1,5},{1,6},{2,3,4,5,6}}
   {{2,5},{1,2,6},{3,4,5,6}}
   {{1,2,3},{2,4,5},{3,4,5}}
   {{1,3,5},{2,3,6},{4,5,6}}
   {{1,2},{1,3},{1,4},{2,3,4}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1,3},{1,4},{1,4},{2,3,4}}
   {{1,3},{1,4},{3,4},{2,3,4}}
		

Crossrefs

A319763 Number of non-isomorphic strict intersecting multiset partitions (sets of multisets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 12, 46, 181
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(8) = 12 multiset partitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,2},{1,3},{2,3,3}}
   {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3},{2,2,3,3}}
   {{1,2},{1,3},{2,3,3,3}}
   {{1,2},{1,3},{2,3,4,4}}
   {{1,2},{1,3,3},{2,3,3}}
   {{1,2},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4,4}}
   {{1,3},{1,1,2},{2,3,3}}
   {{1,3},{1,2,2},{2,3,3}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,3},{1,2,4},{3,4,4}}
   {{2,4},{1,2,3},{3,4,4}}
   {{2,4},{1,2,5},{3,4,5}}
		

Crossrefs

A319764 Number of non-isomorphic intersecting set systems of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 8, 18
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets. It is intersecting if no two parts are disjoint. The weight of a set system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(9) = 8 set systems:
6: {{1,2},{1,3},{2,3}}
7: {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3,4},{2,3,4}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,4},{1,2,5},{3,4,5}}
9: {{1,3},{1,4,5},{2,3,4,5}}
   {{1,5},{1,6},{2,3,4,5,6}}
   {{2,5},{1,2,6},{3,4,5,6}}
   {{1,2,3},{2,4,5},{3,4,5}}
   {{1,3,5},{2,3,6},{4,5,6}}
   {{1,2},{1,3},{1,4},{2,3,4}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1,3},{1,4},{3,4},{2,3,4}}
		

Crossrefs

A319775 Number of non-isomorphic multiset partitions of weight n with empty intersection and no part containing all the vertices.

Original entry on oeis.org

1, 0, 1, 4, 16, 52, 185, 625, 2226, 7840, 28405
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 16 multiset partitions:
2: {{1},{2}}
3: {{1},{2,2}}
   {{1},{2,3}}
   {{1},{2},{2}}
   {{1},{2},{3}}
4: {{1},{2,2,2}}
   {{1},{2,3,3}}
   {{1},{2,3,4}}
   {{1,1},{2,2}}
   {{1,2},{3,3}}
   {{1,2},{3,4}}
   {{1},{1},{2,2}}
   {{1},{1},{2,3}}
   {{1},{2},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3,4}}
   {{1},{3},{2,3}}
   {{1},{1},{2},{2}}
   {{1},{2},{2},{2}}
   {{1},{2},{3},{3}}
   {{1},{2},{3},{4}}
		

Crossrefs

A319782 Number of non-isomorphic intersecting strict T_0 multiset partitions of weight n.

Original entry on oeis.org

1, 1, 1, 4, 7, 17, 42, 98, 248, 631, 1657
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting iff no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 7 multiset partitions:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,2,2,2}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{1,2},{2,2}}
   {{1,3},{2,3}}
		

Crossrefs

A319783 Number of set systems spanning n vertices with empty intersection whose dual is also a set system with empty intersection.

Original entry on oeis.org

1, 0, 0, 1, 203, 490572
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			The a(3) = 1 set system is {{1,2},{1,3},{2,3}}.
		

Crossrefs

A327399 Number of factorizations of n that are constant or whose distinct factors are pairwise coprime.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 6, 1, 2, 2, 3, 1, 5, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 5, 1, 2, 3, 3, 2, 5, 1, 4, 3, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2019

Keywords

Comments

First differs from A327400 at A327400(24) = 4, a(24) = 3.
From Jianing Song, Jun 09 2025: (Start)
Let n = (p_1)^(e_1) * ... * (p_r)^(e_r), then a(n) is the number of partitions of the multiset formed by e_1 1's, e_2 2's, ..., e_r r's such that each pair of parts is either equal or nonintersecting. Let's call such a partition a (e_1,...,e_r)-partition of {1,2,...,r}.
Note that every (e_1,...,e_r)-partition has a base partition by removing duplicates of parts and elements in each part (e.g., {{1,2,2},{1,2,2},{3,3},{4}} -> {{1,2},{3},{4}}), and the base partition is itself a partition on {1,2,...,r}. Since the number of partitions into identical parts of the multiset formed by e_{i_1} (i_1)'s, ..., e_{i_k} (i_k)'s is d(gcd(e_{i_1},...,e_{i_k})), where d = A000005, the number of (e_1,...,e_r)-partitions having base partition P of {1,2,...,r} is Product_{S in P} d(gcd_{i in S} (e_i)). As a result, the number (e_1,...,e_r)-partitions is Sum_{P is a partition of {1,2,...,r}} Product_{S in P} d(gcd_{i in S} (e_i)).
Examples:
# of e_1-partitions = d(e_1);
# of (e_1,e_2)-partitions = d(gcd(e_1,e_2)) + d(e_1)*d(e_2);
# of (e_1,e_2,e_3)-partitions = d(gcd(e_1,e_2,e_3)) + d(gcd(e_1,e_2))*d(e_3) + d(gcd(e_1,e_3))*d(e_2) + d(gcd(e_2,e_3))*d(e_1) + d(e_1)*d(e_2)*d(e_3);
# of (e_1,e_2,e_3,e_4)-partitions = d(gcd(e_1,e_2,e_3,e_4)) + (d(gcd(e_1,e_2,e_3))*d(e_4) + ...) + (d(gcd(e_1,e_2))*d(gcd(e_3,e_4)) + ...) + (d(gcd(e_1,e_2))*d(e_3)*d(e_4) + ...) + d(e_1)*d(e_2)*d(e_3)*d(e_4).
(End)

Examples

			The a(90) = 7 factorizations together with the corresponding multiset partitions of {1,2,2,3}:
  (2*3*3*5)  {{1},{2},{2},{3}}
  (2*5*9)    {{1},{3},{2,2}}
  (2*45)     {{1},{2,2,3}}
  (3*3*10)   {{2},{2},{1,3}}
  (5*18)     {{3},{1,2,2}}
  (9*10)     {{2,2},{1,3}}
  (90)       {{1,2,2,3}}
		

Crossrefs

Constant factorizations are A089723.
Partitions whose distinct parts are pairwise coprime are A304709.
Factorizations that are constant or relatively prime are A327400.
See link for additional cross-references.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[Union[#]]==1||CoprimeQ@@Union[#]&]],{n,100}]

Formula

a(n) = A327695(n) + A089723(n).

A301598 Number of thrice-factorizations of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 4, 1, 10, 4, 4, 1, 16, 1, 4, 4, 34, 1, 16, 1, 16, 4, 4, 1, 54, 4, 4, 10, 16, 1, 22, 1, 80, 4, 4, 4, 78, 1, 4, 4, 54, 1, 22, 1, 16, 16, 4, 1, 181, 4, 16, 4, 16, 1, 54, 4, 54, 4, 4, 1, 102, 1, 4, 16, 254, 4, 22, 1, 16, 4, 22, 1, 272, 1, 4, 16, 16
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2018

Keywords

Comments

A thrice-factorization of n is a choice of a twice-factorization of each factor in a factorization of n. Thrice-factorizations correspond to intervals in the lattice form of the multiorder of integer factorizations.

Examples

			The a(12) = 16 thrice-factorizations:
((2))*((2))*((3)), ((2))*((2)*(3)), ((3))*((2)*(2)), ((2)*(2)*(3)),
((2))*((2*3)), ((2)*(2*3)),
((2))*((6)), ((2)*(6)),
((3))*((2*2)), ((3)*(2*2)),
((3))*((4)), ((3)*(4)),
((2*2*3)),
((2*6)),
((3*4)),
((12)).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    twifacs[n_]:=Join@@Table[Tuples[facs/@f],{f,facs[n]}];
    thrifacs[n_]:=Join@@Table[Tuples[twifacs/@f],{f,facs[n]}];
    Table[Length[thrifacs[n]],{n,15}]

Formula

Dirichlet g.f.: Product_{n > 1} 1/(1 - A281113(n)/n^s).

A305567 Irregular triangle where T(n,k) is the number of finite sets of positive integers with least common multiple n and greatest common divisor k, where k runs over all divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 1, 1, 1, 1, 1, 32, 7, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 8, 4, 2, 1, 1, 1, 1, 32, 2, 7, 1, 1, 1, 1, 1, 32, 7, 1, 2, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 1, 1, 136, 32, 4, 7, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			Triangle begins:
   1
   1  1
   1  1
   2  1  1
   1  1
   7  1  1  1
   1  1
   4  2  1  1
   2  1  1
   7  1  1  1
   1  1
  32  7  2  1  1  1
   1  1
   7  1  1  1
   7  1  1  1
   8  4  2  1  1
   1  1
  32  2  7  1  1  1
   1  1
  32  7  1  2  1  1
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],And[GCD@@#==k,LCM@@#==n]&]],{n,30},{k,Divisors[n]}]
Previous Showing 71-80 of 107 results. Next