cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A304085 Divisor-or-multiple permutation of natural numbers: a(n) = A052330(A304083(n)).

Original entry on oeis.org

1, 2, 6, 3, 24, 12, 4, 8, 120, 60, 20, 5, 40, 10, 30, 15, 840, 420, 140, 35, 7, 280, 70, 14, 210, 105, 21, 168, 84, 28, 56, 7560, 42, 1890, 945, 315, 63, 9, 3780, 1260, 252, 36, 2520, 630, 126, 18, 1512, 756, 189, 27, 378, 54, 1080, 540, 180, 45, 360, 90, 270, 135, 83160, 504, 72, 216, 108, 41580, 13860, 3465, 693, 99, 11, 27720, 6930, 1386, 198, 22, 20790
Offset: 0

Views

Author

Antti Karttunen, May 06 2018

Keywords

Comments

Each a(n) is always either a divisor or a multiple of a(n+1).

Crossrefs

Cf. A304086 (inverse).
Cf. also A064736, A113552, A207901, A281978, A282291, A302350, A302781, A302783, A303751, A303771 for similar permutations.

Programs

  • PARI
    up_to_e = 16; \\ Good for computing up to n = (2^16)-1
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A304085(n) = A052330(A304083(n)); \\ Needs also code from A304083

Formula

a(n) = A052330(A304083(n)).

A304755 Suspected divisor-or-multiple permutation: a(1) = 1, and for n > 1, a(n) is either the second smallest divisor of a(n-1) not already present in sequence, or the smallest divisor if it is the only one not yet used, or (if all divisors have been already encountered), a(n) = a(n-1) * {the least power of the least prime not dividing a(n-1) such that the term is not already present}.

Original entry on oeis.org

1, 2, 6, 3, 12, 4, 36, 18, 9, 72, 24, 8, 216, 54, 27, 108, 540, 10, 5, 20, 60, 30, 15, 120, 40, 360, 90, 45, 180, 1260, 14, 7, 28, 84, 42, 21, 168, 56, 504, 126, 63, 252, 6300, 35, 70, 210, 105, 420, 140, 3780, 189, 378, 1890, 270, 135, 1080, 7560, 315, 630, 6930, 22, 11, 44, 132, 66, 33, 264, 88, 792, 198, 99, 396, 1980, 110, 55
Offset: 1

Views

Author

Antti Karttunen, May 20 2018

Keywords

Crossrefs

Cf. A304756 (inverse).
Cf. A303751, also A282291, A304531 for variants.

Programs

  • PARI
    up_to = 2^16;
    A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669
    v304755 = vector(up_to);
    m304756 = Map();
    find_kth_unused_divisor(k,n,m_inverses) = { my(pd=0); fordiv(n,d,if(!mapisdefined(m_inverses,d),pd=d;k--); if((!k || (d == n)), return(pd))); };
    prev=1; for(n=1,up_to, if((try = find_kth_unused_divisor(2,prev,m304756))!=0, mapput(m304756,v304755[n] = try,n), p = A053669(prev); while(mapisdefined(m304756,prev), prev *= p); v304755[n] = prev; mapput(m304756,prev,n)); prev = v304755[n]);
    A304755(n) = v304755[n];
    A304756(n) = mapget(m304756,n);

A298480 Lexicographically earliest sequence of distinct positive terms such that the Fermi-Dirac factorizations of two consecutive terms differ by exactly one factor.

Original entry on oeis.org

1, 2, 6, 3, 12, 4, 8, 24, 120, 30, 10, 5, 15, 60, 20, 40, 280, 56, 14, 7, 21, 42, 168, 84, 28, 140, 35, 70, 210, 105, 420, 840, 7560, 1080, 216, 54, 18, 9, 27, 108, 36, 72, 360, 90, 45, 135, 270, 1890, 378, 126, 63, 189, 756, 252, 504, 1512, 16632, 1848, 264
Offset: 1

Views

Author

Rémy Sigrist, Jul 21 2018

Keywords

Comments

For Fermi-Dirac representation of n see A182979. - N. J. A. Sloane, Jul 21 2018
For any n > 0, either a(n)/a(n+1) or a(n+1)/a(n) belongs to A050376.
This sequence has similarities with A282291; in both sequences, each pair of consecutive terms contains a term that divides the other.

Examples

			The first terms, alongside a(n+1)/a(n), are:
  n   a(n)  a(n+1)/a(n)
  --  ----  -----------
   1     1        2
   2     2        3
   3     6      1/2
   4     3        2^2
   5    12      1/3
   6     4        2
   7     8        3
   8    24        5
   9   120      1/2^2
  10    30      1/3
  11    10      1/2
  12     5        3
  13    15        2^2
  14    60      1/3
  15    20        2
  16    40        7
  17   280      1/5
  18    56      1/2^2
  19    14      1/2
  20     7        3
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A000120(A052331(a(n)) XOR A052331(a(n+1))) = 1 for any n > 0 (where XOR denotes the bitwise XOR operator).
Apparently, a(n) = A052330(A163252(n-1)) for any n > 0.

A302854 Inverse of A302853: if A302853(k) = n, a(n) = k, or -1 if n does not occur in A302853.

Original entry on oeis.org

0, 1, 3, 2, 5, 25, 4, 26, 7, 8, 10, 9, 6, 28, 11, 27, 13, 14, 16, 15, 18, 30, 17, 31, 20, 21, 23, 22, 19, 29, 12, 24, 65, 66, 7483, 7484, 70, 90, 7488, 7508, 68, 67, 7486, 7485, 69, 91, 7487, 7509, 72, 73, 7490, 7491, 71, 93, 7489, 7511, 75, 74, 7493, 7492, 76, 92, 7494, 7510, 33, 34, 36, 35, 38, 58, 37, 59, 40, 41, 43, 42, 39
Offset: 0

Views

Author

Antti Karttunen, May 17 2018

Keywords

Comments

This is a left inverse of A302853, and also the right inverse if A282291 (and thus also A302853) is surjective (a permutation of natural numbers), in which case the fallback-clause is unnecessary.

Crossrefs

Cf. A302853 (inverse).

Programs

Formula

For all n >= 0, a(A302853(n)) = n.

A304097 Restricted growth sequence transform of A278222(A302853(n)).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 3, 2, 4, 5, 4, 6, 7, 2, 4, 5, 4, 5, 4, 6, 3, 5, 8, 5, 9, 4, 6, 7, 5, 10, 11, 10, 12, 2, 4, 5, 4, 5, 4, 5, 4, 11, 13, 11, 10, 14, 4, 11, 13, 11, 13, 11, 10, 5, 13, 15, 13, 16, 11, 10, 14, 13, 12, 17, 12, 2, 4, 11, 4, 5, 4, 5, 3, 5, 10, 6, 7, 9, 3, 5, 13, 5, 8, 5, 10, 6, 10, 14, 7, 16, 11, 13, 14, 13, 18, 2, 4, 5, 4, 5, 4, 5, 4, 11, 13, 11
Offset: 0

Views

Author

Antti Karttunen, May 17 2018

Keywords

Crossrefs

Compare also the scatter-plot to that of A304535.

Programs

  • PARI
    \\ Needs also code from A282291 and A302853:
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    write_to_bfile(0,rgs_transform(vector(60823,n,A278222(A302853(n-1)))),"b304097.txt");

A338221 Square spiral of distinct positive integers built by greedy algorithm such that each new value (except the initial one) is a divisor or a multiple of some earlier horizontally or vertically adjacent value.

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 10, 7, 8, 16, 12, 20, 40, 24, 9, 18, 36, 30, 15, 45, 90, 50, 14, 28, 32, 64, 48, 60, 80, 120, 240, 160, 72, 27, 54, 108, 216, 144, 150, 25, 75, 180, 360, 270, 100, 42, 21, 63, 126, 252, 84, 96, 192, 320, 480, 720, 1440, 288, 576, 432, 81, 162
Offset: 0

Views

Author

Rémy Sigrist, Jan 30 2021

Keywords

Comments

This sequence has similarities with A113552 and A282291, as each term is adjacent to one of its divisors or multiples.

Examples

			The spiral begins:
      216--108---54---27---72--160--240
        |                             |
      144   36---18----9---24---40  120
        |    |                   |    |
      150   30    6----3----4   20   80
        |    |    |         |    |    |
       25   15    5    1----2   12   60
        |    |    |              |    |
       75   45   10----7----8---16   48
        |    |                        |
      180   90---50---14---28---32---64
        |
      360--270--100---42---21---63--126
		

Crossrefs

Programs

  • PARI
    See Links section.
Previous Showing 11-16 of 16 results.