cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A351037 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000593(i) = A000593(j), for all i, j >= 1, where A000593 is the sum of odd divisors function.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 8, 2, 12, 7, 13, 4, 14, 8, 11, 1, 15, 9, 15, 5, 16, 10, 17, 3, 18, 11, 19, 6, 20, 8, 15, 2, 21, 12, 22, 7, 23, 13, 22, 4, 24, 14, 25, 8, 26, 11, 27, 1, 28, 15, 29, 9, 30, 15, 22, 5, 31, 16, 32, 10, 30, 17, 24, 3, 33, 18, 28, 11, 34, 19, 35, 6, 36
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Comments

Restricted growth sequence transform of A000593.
Question: To which set of n does the horizontal stripe at around a(n) = ~8000 correspond in the scatter plot of this sequence?

Examples

			a(21) = a(31) = 11 because A000593(21) = A000593(31) = 32, and 32 is the 11th distinct value obtained by A000593.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v351037 = rgs_transform(vector(up_to, n, sigma(n>>valuation(n,2))));
    A351037(n) = v351037[n];

A275987 Least k such that sigma(k) = sigma(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 12, 13, 14, 14, 16, 10, 18, 19, 20, 21, 22, 14, 24, 16, 20, 27, 28, 29, 30, 21, 32, 33, 34, 33, 36, 37, 24, 28, 40, 20, 42, 43, 44, 45, 30, 33, 48, 49, 50, 30, 52, 34, 54, 30, 54, 57, 40, 24, 60, 61, 42, 63, 64, 44, 66, 67, 68, 42, 66, 30, 72, 73, 74, 48
Offset: 1

Views

Author

Altug Alkan, Aug 15 2016

Keywords

Examples

			a(11) = 6 because sigma(6) = sigma(11) = 12.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 76}, With[{s = Values@ PositionIndex@ Array[DivisorSigma[1, #] &, nn]}, Array[s[[FirstPosition[s, #][[1]], 1 ]] &, nn]]] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    a(n) = {my(k = 1); while(sigma(k) != sigma(n), k++); k; }
    
  • PARI
    a(n) = invsigmaMin(sigma(n)); \\ Amiram Eldar, Dec 20 2024, using Max Alekseyev's invphi.gp

A369260 Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A349162(i) = A349162(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 16, 24, 25, 26, 27, 28, 21, 29, 30, 31, 30, 32, 33, 34, 26, 35, 36, 37, 38, 39, 40, 28, 30, 41, 42, 43, 44, 45, 46, 47, 44, 48, 49, 50, 51, 52, 53, 37, 54, 55, 56, 57, 58, 59, 60, 57, 44, 61, 62, 63, 41, 64, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 65, 79, 57
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A342671(n), A349162(n)], or equally, of the pair [A000203(n), A342671(n)], or equally, of the pair [A000203(n), A349162(n)].
For all i, j >= 1:
A369259(i) = A369259(j) => a(i) = a(j) => A286603(i) = A286603(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));
    Aux369260(n) = { my(u=A342671(n)); [u, sigma(n)/u]; };
    v369260 = rgs_transform(vector(up_to, n, Aux369260(n)));
    A369260(n) = v369260[n];

A369261 Lexicographically earliest infinite sequence such that a(i) = a(j) => A324644(i) = A324644(j) and A369445(i) = A369445(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 16, 20, 24, 25, 26, 27, 21, 28, 29, 30, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 29, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 35, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 62, 53, 51, 70, 71, 72, 58, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 63
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A324644(n), A369445(n)], or equally, of the pair [A000203(n), A324644(n)], or equally, of the pair [A000203(n), A369445(n)].
For all i, j >= 1: a(i) = a(j) => A286603(i) = A286603(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324644(n) = gcd(sigma(n),A276086(n));
    Aux369261(n) = { my(u=A324644(n)); [u, sigma(n)/u]; };
    v369261 = rgs_transform(vector(up_to, n, Aux369261(n)));
    A369261(n) = v369261[n];

A296088 Filter combining sigma(n) with the parity of n; restricted growth sequence transform of ((-1)^n)*A000203(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 20, 25, 26, 27, 28, 21, 29, 30, 31, 30, 32, 33, 23, 34, 35, 36, 37, 38, 39, 40, 28, 30, 41, 42, 43, 44, 45, 46, 47, 44, 47, 48, 35, 49, 50, 51, 37, 52, 53, 54, 55, 56, 57, 58, 55, 44, 59, 60, 61, 62, 63, 58, 50, 48, 64, 65, 57, 54, 66, 67, 68, 69, 70, 71, 72, 73, 50, 74, 55, 69
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Examples

			For n = 21 and 31 the restricted growth sequence transform assigns the same value (we have a(21) = a(31) = 21) because both numbers are odd, and the sum of their divisors is equal as sigma(21) = sigma(31) = 32.
On the other hand, although sigma(14) = sigma(15) = 24, a(14) != a(15) because the other number is even and the other number is odd. Compare to A286603.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(up_to,n,((-1)^n)*sigma(n))),"b296088.txt");

A366294 Lexicographically earliest infinite sequence such that a(i) = a(j) => A326042(i) = A326042(j) for all i, j >= 1, where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 2, 4, 5, 1, 6, 7, 8, 2, 2, 9, 4, 5, 2, 3, 8, 6, 10, 10, 11, 8, 7, 7, 1, 2, 12, 13, 14, 4, 2, 15, 14, 2, 16, 4, 17, 8, 2, 13, 5, 10, 16, 18, 19, 11, 10, 20, 10, 7, 6, 10, 8, 1, 5, 7, 21, 12, 22, 23, 8, 14, 8, 24, 25, 2, 26, 27, 4, 14, 28, 7, 14, 16, 14, 9, 29, 17, 25, 20, 4, 2, 2, 30, 31, 5, 16, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2023

Keywords

Comments

Restricted growth sequence transform of A326042.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A326042(n) = A064989(sigma(A003961(n)));
    v366294  = rgs_transform(vector(up_to,n,A326042(n)));
    A366294(n) = v366294[n];

A366295 Lexicographically earliest infinite sequence such that a(i) = a(j) => A349623(i) = A349623(j) for all i, j >= 1, where A349623 is the Dirichlet inverse of A064989(sigma(A003961(n))).

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 3, 6, 7, 1, 8, 9, 10, 5, 5, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 15, 20, 9, 2, 3, 21, 22, 14, 23, 5, 24, 4, 5, 25, 26, 27, 10, 3, 28, 13, 29, 30, 31, 32, 33, 29, 34, 17, 35, 16, 18, 15, 1, 36, 37, 38, 39, 28, 40, 15, 4, 10, 41, 42, 3, 43, 44, 12, 14, 45, 9, 14, 30, 4, 46, 47, 48, 49, 50, 23, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2023

Keywords

Comments

Restricted growth sequence transform of A349623.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A326042(n) = A064989(sigma(A003961(n)));
    v366295 = rgs_transform(DirInverseCorrect(vector(up_to,n,A326042(n))));
    A366295(n) = v366295[n];

A369259 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003557(i) = A003557(j), A048250(i) = A048250(j) and A342671(i) = A342671(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 59
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2024

Keywords

Comments

Restricted growth sequence transform of the triplet [A003557(j), A048250(i), A342671(n)].
For all i, j >= 1:
a(i) = a(j) => A323368(i) = A323368(j) => A291751(i) = A291751(j),
a(i) = a(j) => A369260(i) = A369260(j) => A286603(i) = A286603(j).

Crossrefs

Differs from related A296089 and A323368 for the first time at n=79, where a(79) = 69, while A296089(79) = A323368(79) = 51.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = (n/factorback(factor(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A342671(n) = gcd(sigma(n), A003961(n));
    Aux369259(n) = [A003557(n), A048250(n), A342671(n)];
    v369259 = rgs_transform(vector(up_to, n, Aux369259(n)));
    A369259(n) = v369259[n];

A374485 Lexicographically earliest infinite sequence such that a(i) = a(j) => A350388(i) = A350388(j) and A351569(i) = A351569(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 20, 32, 33, 22, 34, 35, 36, 37, 26, 28, 38, 39, 40, 26, 41, 29, 42, 26, 42, 43, 33, 20, 44, 45, 34, 46, 47, 48, 49, 50, 51, 34, 49, 26, 52, 53, 54, 55, 56, 34, 57, 43, 58, 59, 60, 48, 61, 62, 63, 42, 64, 33, 65, 66, 44, 67, 49, 42, 68
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A350388(n), A351569(n)].
For all i, j >= 1: a(i) = a(j) => A000203(i) = A000203(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351569(n) = sigma(A350389(n));
    Aux374485(n) = [A350388(n), A351569(n)];
    v374485 = rgs_transform(vector(up_to, n, Aux374485(n)));
    A374485(n) = v374485[n];
Previous Showing 11-19 of 19 results.