cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A351452 Lexicographically earliest infinite sequence such that a(i) = a(j) => A006530(i) = A006530(j) and A278222(i) = A278222(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 19, 14, 26, 8, 27, 15, 28, 5, 29, 16, 30, 9, 31, 17, 32, 2, 33, 18, 34, 10, 35, 19, 36, 6, 37, 20, 24, 11, 38, 21, 39, 4, 40, 22, 41, 12, 42, 23, 43, 7, 44, 24, 45, 13, 46, 25, 47, 3, 48, 19, 49, 14, 50, 26, 51, 8, 52
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A006530(n), A278222(n)].
For all i, j >= 1: A324400(i) = A324400(j) => a(i) = a(j).

Crossrefs

Differs from A351454 and A351460 for the first time at n=49, where a(49) = 19, while A351454(49) = A351460(49) = 26.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    Aux351452(n) = [A006530(n), A278222(n)];
    v351452 = rgs_transform(vector(up_to, n, Aux351452(n)));
    A351452(n) = v351452[n];

A351578 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(f(i)) = A007814(f(j)) and A278222(f(i)) = A278222(f(j)), for all i, j >= 1, where f(k) = A109812(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7, 10, 6, 11, 12, 13, 14, 6, 15, 16, 15, 16, 17, 18, 7, 16, 19, 20, 21, 22, 18, 7, 16, 22, 6, 22, 18, 17, 23, 24, 25, 15, 16, 26, 16, 27, 28, 23, 29, 30, 23, 22, 6, 31, 16, 7, 32, 33, 15, 33, 18, 22, 18, 27, 33, 16, 22, 34, 23, 17, 25, 27, 16, 35, 36, 37, 38, 32, 28, 32, 39, 18, 40, 16
Offset: 1

Views

Author

Antti Karttunen, Apr 07 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(A109812(n)), A046523(A005940(1+A109812(n)))].
The sequence allots a new distinct number for each newly encountered combination of the 2-adic valuation of A109812 (A351964), and the multiset of the lengths of 1-runs in the odd part of A109812 (A351965). See the examples.
For all i, j: a(i) = a(j) => A352889(i) = A352889(j).

Examples

			   n   A109812(n)  [base-2]   A351964(n)           Lengths of       a(n)
                              (# of trailing 0's)  1-runs       (allotted #)
-----+----------------------------------------------------------------------
   1 :          1       [1],  0                    [1]               1
   2 :          2      [10],  1                    [1]               2
   3 :          4     [100],  2                    [1]               3
   4 :          3      [11],  0                    [2]               4
   5 :          8    [1000],  3                    [1]               5
   6 :          5     [101],  0                    [1,1]             6
   7 :         10    [1010],  1                    [1,1]             7
   8 :         16   [10000],  4                    [1]               8
   9 :          6     [110],  1                    [2]               9
  10 :          9    [1001],  0                    [1,1]             6
  11 :         18   [10010],  1                    [1,1]             7
Because the combinations of the multiset of 1-runs in the binary expansion of A109812(n) and the number of trailing zeros in it (A351964) are unique for n = 1 .. 9, a unique increasing number (starting from 1) is allotted for each, and a(n) = n for n <= 9. On the other hand, at n=10, the binary expansion is [1001], for which these two measures are equal to that of binary expansion [101] found first time at n=6, therefore the rgs-transform allots for 10 the same number as for 6, and a(10) = a(6) = 6. At n=11, the binary expansion is [10010], where these two measures coincide with that of [1010] found first time at n=7, therefore a(10) = a(7) = 7.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v109812 = readvec("b109812_to10e5.txt"); \\ Prepared from b-file data with gawk ' { print $2 } '
    up_to = #v109812;
    A109812(n) = v109812[n];
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A007814(n) = valuation(n,2);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    v351578 = rgs_transform(vector(up_to, n, [A007814(A109812(n)), A046523(A005940(1+A109812(n)))]));
    A351578(n) = v351578[n];

A366262 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366261(i) = A366261(j) for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 4, 5, 6, 2, 4, 7, 4, 5, 3, 7, 8, 2, 4, 7, 4, 7, 4, 9, 8, 10, 3, 7, 11, 7, 6, 5, 6, 2, 4, 7, 4, 7, 4, 9, 8, 12, 4, 9, 13, 9, 8, 7, 13, 12, 3, 7, 11, 7, 11, 7, 13, 14, 15, 5, 8, 14, 8, 10, 15, 2, 4, 7, 4, 7, 4, 9, 8, 12, 4, 9, 13, 9, 8, 7, 13, 16, 4, 9, 13, 9, 13, 9, 17, 16, 18, 7, 13, 19, 13, 12, 8, 10
Offset: 0

Views

Author

Antti Karttunen, Oct 05 2023

Keywords

Comments

Restricted growth sequence transform of A366261.
For all i, j >= 0: a(i) = a(j) => A366254(i) = A366254(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A209229(n) = (n && !bitand(n,n-1));
    A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); };
    A303767(n) = if(!n,n,if(A209229(n),n+A303767(n-1),A053644(n)+A303767(n-A053644(n)-1)));
    A366260(n) = A005940(1+A303767(n));
    A366261(n) = A046523(A366260(n));
    v366262 = rgs_transform(vector(1+up_to,n,A366261(n-1)));
    A366262(n) = v366262[1+n];

A286533 Restricted growth sequence of A278533 (prime-signature of A253563).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 3, 2, 6, 7, 7, 5, 4, 5, 3, 2, 8, 9, 10, 7, 9, 11, 7, 5, 6, 7, 7, 5, 4, 5, 3, 2, 12, 13, 14, 9, 14, 15, 10, 7, 13, 15, 15, 11, 9, 11, 7, 5, 8, 9, 10, 7, 9, 11, 7, 5, 6, 7, 7, 5, 4, 5, 3, 2, 16, 17, 18, 13, 19, 20, 14, 9, 18, 21, 21, 15, 14, 15, 10, 7, 17, 20, 21, 15, 20, 22, 15, 11, 13, 15, 15, 11, 9, 11, 7, 5, 12, 13, 14, 9, 14, 15, 10, 7
Offset: 0

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
    A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n)));
    A253560(n) = if(1==n, 1, (n*prime(A061395(n))));
    A253563(n) = if(n<2,(1+n),if(!(n%2),A253560(A253563(n/2)),A253550(A253563((n-1)/2)))); \\ Would be better if memoized!
    A278533(n) = A046523(A253563(n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278533(n-1))),"b286533.txt");

A286535 Restricted growth sequence of A278535 (prime-signature of A253565).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 5, 2, 3, 4, 5, 4, 6, 6, 7, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 4, 6, 8, 9, 8, 12, 12, 13, 6, 10, 12, 14, 9, 14, 13, 15, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 4, 6, 8, 9, 8, 12, 12, 13, 6, 10, 12, 14, 9, 14, 13, 15, 4, 6, 8, 9, 8, 12, 12, 13, 8, 12, 16, 17, 12, 18
Offset: 0

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
    A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n)));
    A253560(n) = if(1==n, 1, (n*prime(A061395(n))));
    A253565(n) = if(n<2,(1+n),if(!(n%2),A253550(A253565(n/2)),A253560(A253565((n-1)/2)))); \\ Would be better if memoized!
    A278535(n) = A046523(A253565(n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278535(n-1))),"b286535.txt");

A302795 Restricted growth sequence transform of A278222(A302793(n)).

Original entry on oeis.org

1, 2, 3, 4, 2, 3, 2, 5, 6, 4, 2, 7, 4, 7, 4, 3, 5, 4, 2, 7, 4, 8, 9, 6, 7, 7, 10, 3, 7, 10, 5, 11, 9, 9, 2, 7, 4, 8, 12, 4, 7, 8, 12, 13, 8, 9, 7, 14, 4, 7, 10, 3, 7, 6, 7, 15, 12, 9, 5, 15, 4, 14, 16, 9, 11, 4, 2, 7, 12, 8, 9, 4, 7, 8, 9, 4, 8, 10, 7, 14, 12, 8, 12, 12, 8, 12, 8, 17, 4, 18, 7, 19, 12, 17, 4, 9, 14, 7, 12, 3, 7, 10, 7, 15, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Apr 26 2018

Keywords

Crossrefs

Cf. also A286602, A286622 (compare the scatter-plots).

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ After code in A005940
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ From A193231
    A302793(n) = if(!n,n,A193231(1+A193231(n-1)));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278222(A302793(n-1)))),"b302795.txt");

A304737 Restricted growth sequence transform of A278222(A064413(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 1, 3, 3, 4, 3, 5, 5, 6, 2, 1, 3, 7, 7, 3, 8, 4, 7, 7, 5, 7, 7, 9, 3, 1, 3, 3, 8, 6, 7, 7, 9, 10, 3, 7, 9, 9, 6, 2, 7, 7, 8, 5, 7, 11, 4, 12, 3, 7, 9, 9, 13, 3, 14, 14, 13, 3, 1, 3, 6, 6, 15, 10, 9, 7, 3, 6, 6, 15, 6, 6, 10, 7, 10, 10, 3, 10, 16, 17, 7, 9, 18, 18, 10, 2, 7, 19, 7, 8, 8, 10, 8, 10, 10, 17, 9, 12, 5, 9
Offset: 1

Views

Author

Antti Karttunen, May 18 2018

Keywords

Comments

Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A064413(n), the n-th term of EKG-sequence. Compare to the scatter plot of A286622.

Crossrefs

Programs

  • PARI
    \\ Needs also code for A064413.
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v304737 = rgs_transform(vector(65539,n,A278222(A064413(n))));
    A304737(n) = v304737[n];

A318831 Restricted growth sequence transform of A278222(A000010(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 3, 4, 1, 3, 2, 3, 2, 5, 1, 6, 1, 3, 1, 2, 2, 3, 3, 2, 1, 3, 2, 7, 3, 2, 4, 8, 1, 7, 3, 1, 2, 4, 3, 3, 2, 3, 5, 8, 1, 6, 6, 3, 1, 2, 3, 3, 1, 4, 2, 4, 2, 3, 3, 3, 3, 6, 2, 8, 1, 9, 3, 7, 2, 1, 7, 5, 3, 4, 2, 3, 4, 6, 8, 3, 1, 2, 7, 6, 3, 4, 1, 9, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Comments

Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary expansion of A000010(n).
For all i, j: a(i) = a(j) => A295660(i) = A295660(j).

Crossrefs

Compare also with the scatterplots of A286622, A304101 and A318832.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v318831 = rgs_transform(vector(up_to,n,A278222(eulerphi(n))));
    A318831(n) = v318831[n];

A322861 Lexicographically earliest such sequence a that a(i) = a(j) => A278222(A285330(i)) = A278222(A285330(j)) for all i, j.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 3, 2, 4, 3, 2, 2, 3, 2, 4, 4, 4, 2, 4, 4, 4, 4, 5, 2, 5, 2, 2, 4, 4, 3, 3, 2, 4, 4, 4, 2, 6, 2, 6, 7, 4, 2, 4, 5, 4, 4, 6, 2, 3, 4, 5, 4, 4, 2, 7, 2, 4, 8, 2, 4, 6, 2, 4, 4, 6, 2, 9, 2, 4, 10, 6, 3, 6, 2, 6, 9, 4, 2, 8, 4, 4, 4, 6, 2, 7, 4, 11, 4, 4, 4, 4, 2, 5, 4, 4, 2, 6, 2, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2018

Keywords

Comments

Restricted growth sequence transform of A278222(A285330(n)).
For all i, j:
A322806(i) = A322806(j) => a(i) = a(j),
A322807(i) = A322807(j) => a(i) = a(j),
a(i) = a(j) => A322862(i) = A322862(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(moebius(n)<>0,A048675(n),A285328(n));
    A278222(n) = A046523(A005940(1+n));
    v322861 = rgs_transform(vector(up_to,n,A278222(A285330(n))));
    A322861(n) = v322861[n];

A322866 Lexicographically earliest such sequence a that a(i) = a(j) => A046523(A322863(i)) = A046523(A322863(j)) for all i, j.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 3, 3, 2, 1, 4, 6, 2, 7, 3, 1, 5, 1, 7, 3, 2, 6, 8, 1, 2, 3, 4, 1, 5, 1, 3, 7, 2, 1, 7, 8, 9, 3, 3, 1, 7, 6, 4, 3, 2, 1, 8, 1, 2, 7, 7, 6, 5, 1, 3, 3, 9, 1, 3, 1, 2, 9, 3, 8, 5, 1, 7, 7, 2, 1, 8, 6, 2, 3, 4, 1, 7, 8, 3, 3, 2, 6, 7, 1, 10, 7, 11, 1, 5, 1, 4, 9
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2018

Keywords

Comments

Restricted growth sequence transform of A046523(A322863(n)).
Equally, restricted growth sequence transform of A278222(A322865(n)).
For all i, j: a(i) = a(j) => A322867(i) = A322867(j).

Crossrefs

Programs

  • PARI
    up_to = 8192;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A322863(n) = if(!n,1,A005940(1+A122111(n)));
    v322866 = rgs_transform(vector(up_to,n,A046523(A322863(n))));
    A322866(n) = v322866[n];
Previous Showing 41-50 of 61 results. Next