A318961
One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 3 (mod 4) case.
Original entry on oeis.org
3, 3, 11, 11, 11, 75, 75, 331, 843, 1867, 3915, 8011, 16203, 16203, 16203, 81739, 212811, 474955, 474955, 474955, 2572107, 6766411, 6766411, 23543627, 57098059, 57098059, 57098059, 57098059, 593968971, 1667710795, 1667710795, 1667710795, 1667710795, 18847579979
Offset: 2
The unique number k in [1, 4] and congruent to 3 modulo 4 such that k^2 + 7 is divisible by 8 is 3, so a(2) = 3.
a(2)^2 + 7 = 16 which is divisible by 16, so a(3) = a(2) = 3.
a(3)^2 + 7 = 16 which is not divisible by 32, so a(4) = a(3) + 2^3 = 11.
a(4)^2 + 7 = 128 which is divisible by 64, so a(5) = a(4) = 11.
a(5)^2 + 7 = 128 which is divisible by 128, so a(6) = a(5) = 11.
...
Expansions of p-adic integers:
A318960, this sequence (2-adic, sqrt(-7));
Also expansions of 10-adic integers:
A322086
One of the two successive approximations up to 13^n for 13-adic integer sqrt(3). Here the 9 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 9, 61, 1075, 9863, 9863, 3722793, 56817692, 245063243, 2692255406, 23901254152, 1540344664491, 12293307028713, 198677988008561, 804428201193067, 24428686515388801, 75614579529479558, 741031188712659399, 26692278946856673198, 813880127610558425101, 11047322160238681199840
Offset: 0
9^2 = 81 = 6*13 + 3.
61^2 = 3721 = 22*13^2 + 3.
1075^2 = 1155625 = 526*13^3 + 3.
-
S:= map(t -> op([1,3],t),[padic:-evalp(RootOf(x^2-3,x),13,30)]):
S9:= op(select(t -> t[1]=9, S)):
seq(add(S9[i]*13^(i-1),i=1..n-1),n=1..31); # Robert Israel, Jun 13 2019
-
a(n) = truncate(-sqrt(3+O(13^n)))
A322089
One of the two successive approximations up to 13^n for 13-adic integer sqrt(-3). Here the 6 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 6, 45, 2073, 15255, 300865, 2899916, 22207152, 273201220, 7614777709, 92450772693, 1333177199334, 4917497987408, 191302178967256, 1705677711928521, 48954194340319989, 202511873382592260, 3529594919298491465, 38131258596823843197, 38131258596823843197, 8809653000849500507259
Offset: 0
6^2 = 36 = 3*13 - 3.
45^2 = 2025 = 12*13^2 - 3.
2073^2 = 4297329 = 1956*13^3 - 3.
A322090
One of the two successive approximations up to 13^n for 13-adic integer sqrt(3). Here the 7 (mod 13) case (except for n = 0).
Original entry on oeis.org
0, 7, 124, 124, 13306, 70428, 1926893, 40541365, 542529501, 2989721664, 45407719156, 458983194703, 18380587135073, 111572927624997, 2231698673770768, 2231698673770768, 462904735800587581, 5120821000082846468, 74324148355133549932, 1423789031778622267480, 10195310774031298931542
Offset: 0
7^2 = 49 = 4*13 - 3.
124^2 = 15376 = 91*13^2 - 3 = 7*13^3 - 3.
13306^2 = 177049636 = 6199*13^4 - 3.
A034944
Successive approximations to 13-adic integer sqrt(-1).
Original entry on oeis.org
0, 5, 70, 239, 143044, 1999509, 6826318, 822557039, 85658552023, 1188526486815, 11941488851037, 291518510320809, 2108769149874327, 13920898306972194, 2675587335039691558, 63228498770709057089
Offset: 0
- K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.
-
seq(n)={my(v=vector(n), i=1, k=0); while(i<#v, k++; my(t=truncate(sqrt(-1 + O(13^k)))); if(t > v[i], i++; v[i]=t)); v} \\ Andrew Howroyd, Nov 10 2018
Comments