cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 81 results. Next

A289801 p-INVERT of the tetrahedral numbers (A000292), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 6, 29, 133, 597, 2661, 11856, 52878, 235986, 1053345, 4701627, 20985035, 93662073, 418038721, 1865820223, 8327671681, 37168717729, 165894342774, 740432630793, 3304756826019, 14750048986898, 65833571645931, 293833543748968, 1311460845206801
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^4; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000292 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289801 *)

Formula

G.f.: (1 - 3 x + 6 x^2 - 4 x^3 + x^4)/(1 - 9 x + 31 x^2 - 62 x^3 + 74 x^4 - 57 x^5 + 28 x^6 - 8 x^7 + x^8).
a(n) = 9*a(n-1) - 31*a(n-2) + 62*a(n-3) - 74*a(n-4) + 57*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).

A289802 p-INVERT of the quarter-squares (A002620), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 15, 53, 185, 643, 2234, 7764, 26988, 93819, 326149, 1133811, 3941521, 13702079, 47633109, 165588965, 575643853, 2001134880, 6956629199, 24183622175, 84070541130, 292257951771, 1015988587832, 3531923782817, 12278174929397, 42683134990390
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/((1 - x)^2*(1 - x^2)); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A002620 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289802 *)

Formula

G.f.: (1 - x + 2 x^3 - x^4)/(1 - 5 x + 5 x^2 + 4 x^3 - 12 x^4 + 5 x^5 + 4 x^6 - 4 x^7 + x^8).
a(n) = 5*a(n-1) - 5*a(n-2) - 4*a(n-3) + 12*a(n-4) - 5*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8).

A289804 p-INVERT of the even bisection (A001519) of the Fibonacci numbers, where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 3, 9, 29, 96, 321, 1077, 3617, 12149, 40802, 137009, 459991, 1544169, 5183201, 17396800, 58387097, 195950657, 657602545, 2206838633, 7405775266, 24852220929, 83398067755, 279861976377, 939138581941, 3151475258656, 10575403936625, 35487807890381
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (1 - 2*x)/(1 - 3*x + x^2); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A001519 shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289804 *)

Formula

G.f.: (-1 + 4 x - 3 x^2 - 2 x^3)/(-1 + 7 x - 15 x^2 + 9 x^3 + x^4).
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3) + a(n-4).

A289805 p-INVERT of A103889, where p(S) = 1 - S - S^2.

Original entry on oeis.org

2, 9, 36, 153, 624, 2584, 10632, 43865, 180774, 745347, 3072528, 12666854, 52218790, 215273737, 887468000, 3658604277, 15082652352, 62178493132, 256331858332, 1056732372729, 4356396740786, 17959318086575, 74037587378784, 305221185520298, 1258279413185322
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x*(x^2 - x + 2)/((x - 1)^2*(1 + x)); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A103889 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289805 *)
    LinearRecurrence[{4,2,-8,8,-2,1},{2,9,36,153,624,2584},30] (* Harvey P. Dale, Jun 30 2021 *)

Formula

G.f.: (-2 - x + 4 x^2 - 7 x^3 + 4 x^4 - 2 x^5)/(-1 + 4 x + 2 x^2 - 8 x^3 + 8 x^4 - 2 x^5 + x^6).
a(n) = 4*a(n-1) + 2*a(n-2) - 8*a(n-3) + 8*a(n-4) - 2*a(n-5) + a(n-6).

A289806 p-INVERT of (1,1,2,2,3,3,...) (A008619), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 3, 9, 26, 74, 211, 600, 1708, 4860, 13832, 39364, 112029, 318827, 907366, 2582312, 7349121, 20915193, 59523497, 169400608, 482104856, 1372044007, 3904762096, 11112739032, 31626246588, 90006565434, 256153755080, 728999555983, 2074692805003, 5904462080604
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/((1 - x) (1 - x^2)); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A008619 shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289806 *)

Formula

G.f.: (1 - x^2 + x^3)/(1 - 3 x - x^2 + 5 x^3 - 2 x^4 - 2 x^5 + x^6).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) + 2*a(n-4) + 2*a(n-5) - a(n-6).

A289807 p-INVERT of (1,2,2,3,3,4,4,...) (A080513), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 13, 42, 133, 424, 1348, 4291, 13653, 43449, 138261, 439979, 1400101, 4455420, 14178073, 45117606, 143573662, 456881476, 1453892534, 4626590576, 14722780217, 46850970327, 149089600359, 474434334814, 1509749422360, 4804338875098, 15288412556740
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (1 + x - x^2)/((1 - x)^2*(1 + x)); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A080513 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289807 *)
    LinearRecurrence[{3,2,-5,1,2,-1},{1,4,13,42,133,424},30] (* Harvey P. Dale, Aug 20 2024 *)

Formula

G.f.: (1 + x - x^2)/(1 - 3 x - 2 x^2 + 5 x^3 - x^4 - 2 x^5 + x^6).
a(n) = 3*a(n-1) + 2*a(n-2) - 5*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).

A289809 p-INVERT of (1,2,1,3,1,4,1,5,...) (A133622), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 12, 38, 114, 354, 1076, 3311, 10120, 31043, 95044, 291284, 892242, 2733804, 8375092, 25659298, 78610859, 240840496, 737856017, 2260561368, 6925635380, 21217961710, 65005083598, 199154984626, 610147638720, 1869298875531, 5726938575936, 17545523113507
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x + ^2c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (1 + 2 x - x^2 - x^3)/(1 - x^2)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A133622 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289809 *)

Formula

G.f.: (1 + 3 x + x^2 - 3 x^3 - 3 x^4 + x^5 + x^6)/(1 - x - 7 x^2 - x^3 +
9 x^4 + 3 x^5 - 5 x^6 - x^7 + x^8).
a(n) = a(n-1) + 7*a(n-2) + a(n-3) - 9*a(n-4) - 3*a(n-5) + 5*a(n-6) + a(n-7) - a(n-8)..

A289810 p-INVERT of A081696, where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 3, 10, 37, 141, 548, 2155, 8543, 34062, 136393, 547957, 2207144, 8908901, 36021499, 145853606, 591277797, 2399421839, 9745388640, 39611178893, 161109065899, 655647568024, 2669558849029, 10874316446699, 44313536385428, 180644362403905, 736631134007651
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x + Sqrt[1 - 4*x]); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A081696 shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289810 *)

A289843 p-INVERT of (1,0,2,0,3,0,4,0,5,...) (A027656), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 2, 5, 13, 29, 73, 168, 410, 962, 2317, 5483, 13131, 31193, 74509, 177311, 423025, 1007505, 2402354, 5723761, 13644587, 32514730, 77501115, 184698088, 440216833, 1049148789, 2500520812, 5959478837, 14203542282, 33851496564, 80679640434, 192285583548
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A027656 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289843 *)

Formula

G.f.: (1 + x - 2 x^2 + x^4)/(1 - x - 5 x^2 + 2 x^3 + 6 x^4 - x^5 - 4 x^6 + x^8).
a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 6*a(n-4) + a(n-5) + 4*a(n-6) - a(n-8).

A289844 p-INVERT of A175676 (starting at n=3), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 2, 3, 7, 16, 31, 64, 134, 274, 567, 1168, 2405, 4967, 10232, 21094, 43505, 89672, 184892, 381203, 785886, 1620327, 3340606, 6887304, 14199737, 29275538, 60357622, 124439898, 256558196, 528948160, 1090536002, 2248364880, 4635470266, 9556979689, 19703689739
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0) + c(1)*x + c(2)*x^2 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/((x - 1)^2*(1 + x + x^2)^2); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A175676, shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289844 *)
  • PARI
    Vec((1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12) + O(x^60)) \\ Colin Barker, Aug 13 2017

Formula

a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - 6*a(n-7) + a(n-8) + 4*a(n-10) - a(n-13).
G.f.: (1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12). - Colin Barker, Aug 13 2017
Previous Showing 41-50 of 81 results. Next