cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 81 results. Next

A291015 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^3)^2.

Original entry on oeis.org

2, 7, 23, 75, 244, 793, 2576, 8366, 27167, 88215, 286439, 930072, 3019941, 9805712, 31838986, 103380599, 335674791, 1089929347, 3538978588, 11490991649, 37311016064, 121148109014, 393365440335, 1277249563655, 4147203285279, 13465884484800, 43723452275981
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    I:=[2,7,23]; [n le 3 select I[n] else 5*Self(n-1) -6*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Jun 06 2023
    
  • Mathematica
    z = 60; s = x/(1-x); p = (1 - s^3)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291015 *)
    LinearRecurrence[{5,-6,1}, {2,7,23}, 50] (* G. C. Greubel, Jun 06 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A291015
        if (n<3): return (2,7,23)[n]
        else: return 5*a(n-1) - 6*a(n-2) + a(n-3)
    [a(n) for n in range(51)] # G. C. Greubel, Jun 06 2023

Formula

G.f.: (2 - 3*x)/(1 - 5*x + 6*x^2 - x^3).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) n >= 4.

A291016 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 4*S + S^2.

Original entry on oeis.org

4, 19, 90, 426, 2016, 9540, 45144, 213624, 1010880, 4783536, 22635936, 107114400, 506870784, 2398538304, 11350005120, 53708800896, 254152774656, 1202663842560, 5691066407424, 26930415389184, 127436093890560, 603034071008256, 2853587862706176
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    I:=[4,19]; [n le 2 select I[n] else 6*(Self(n-1)-Self(n-2)): n in [1..40]]; // G. C. Greubel, Jun 06 2023
    
  • Mathematica
    z = 60; s = x/(1-x); p = 1 - 4 s + s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291016 *)
    LinearRecurrence[{6,-6}, {4,19}, 40] (* G. C. Greubel, Jun 06 2023 *)
  • SageMath
    A291016=BinaryRecurrenceSequence(6,-6,4,19)
    [A291016(n) for n in range(51)] # G. C. Greubel, Jun 06 2023

Formula

G.f.: (4 - 5*x)/(1 - 6*x + 6*x^2).
a(n) = 6*a(n-1) - 6*a(n-2) n >= 3.
From G. C. Greubel, Jun 06 2023: (Start)
a(n) = ((3+sqrt(3))^(n+4) - (3-sqrt(3))^(n+4))/(72*sqrt(3)).
a(n) = 6^(n/2)*(4*ChebyshevU(n, sqrt(3/2)) - (5/sqrt(6))*ChebyshevU(n - 1, sqrt(3/2))).
E.g.f.: exp(3*x)*(4*cosh(sqrt(3)*x) + (7/sqrt(3))*sinh(sqrt(3)*x)). (End)

A291017 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 5 S + S^2.

Original entry on oeis.org

5, 29, 168, 973, 5635, 32634, 188993, 1094513, 6338640, 36708889, 212591743, 1231179978, 7130117645, 41292563669, 239137122168, 1384911909493, 8020423511275, 46448581212474, 268997103908393, 1557839658871433, 9021897884741280, 52248407581088929
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - 5 s + s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291017 *)

Formula

G.f.: (5 - 6 x)/(1 - 7 x + 7 x^2).
a(n) = 7*a(n-1) - 7*a(n-2) n >= 3.

A291018 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 6 S + S^2.

Original entry on oeis.org

6, 41, 280, 1912, 13056, 89152, 608768, 4156928, 28385280, 193826816, 1323532288, 9037643776, 61712891904, 421401985024, 2877512744960, 19648886079488, 134170986676224, 916176804773888, 6256046544781312, 42718957920059392, 291703291002224640
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - 6 s + s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291018 *)

Formula

G.f.: (6 - 7 x)/(1 - 8 x + 8 x^2).
a(n) = 8*a(n-1) - 8*a(n-2) n >= 3.

A291019 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3 + S^4.

Original entry on oeis.org

1, 3, 9, 25, 68, 185, 504, 1373, 3739, 10180, 27714, 75445, 205376, 559064, 1521840, 4142609, 11276581, 30695881, 83556891, 227449066, 619135745, 1685339900, 4587637263, 12487934387, 33993205996, 92532358762, 251880840375, 685640764594, 1866371634554
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3 + s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291019 *)

Formula

G.f.: (1 - 2 x + 2 x^2 - 2 x^3)/(1 - 5 x + 8 x^2 - 6 x^3 + 3 x^4).
a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) - 3*a(n-4) for n >= 5.

A291020 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3 - S^4 + S^5.

Original entry on oeis.org

1, 3, 9, 27, 79, 228, 656, 1889, 5445, 15701, 45275, 130544, 376388, 1085199, 3128841, 9021083, 26009635, 74991112, 216214692, 623391005, 1797363157, 5182163781, 14941232871, 43078615236, 124204414928, 358106605227, 1032494220505, 2976890957419
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3 - s^4 + s^5;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291020 *)

Formula

G.f.: -((-1 + 3 x - 4 x^2 + 2 x^3 + x^4)/(1 - 6 x + 13 x^2 - 14 x^3 + 7 x^4) ).
a(n) = 6*a(n-1) - 13*a(n-2) + 14*a(n-3) - 7*a(n-4) for n >= 6.

A291021 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3 + S^4 + S^5.

Original entry on oeis.org

1, 3, 9, 25, 67, 178, 472, 1249, 3297, 8685, 22843, 60014, 157540, 413289, 1083693, 2840521, 7443331, 19500394, 51079696, 133782385, 350354841, 917456901, 2402365387, 6290338310, 16470047644, 43122600825, 112903347237, 295598625697, 773914899475
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3 + s^4 + s^5;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291021 *)

Formula

G.f.: (-1 + 3 x - 4 x^2 + 4 x^3 - x^4)/(-1 + 6 x - 13 x^2 + 14 x^3 - 9 x^4 + 2 x^5).
a(n) = 6*a(n-1) - 13*a(n-2) + 14*a(n-3) - 9*a(n-4) + 2*a(n-5) for n >= 5.

A291023 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 3 S^2 + 2 S^3.

Original entry on oeis.org

0, 3, 4, 12, 24, 56, 120, 264, 568, 1224, 2616, 5576, 11832, 25032, 52792, 111048, 233016, 487880, 1019448, 2126280, 4427320, 9204168, 19107384, 39612872, 82021944, 169636296, 350457400, 723284424, 1491308088, 3072094664, 6323146296, 13004206536, 26724240952
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - 3 s^2 + 2 s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291023 *)
  • PARI
    concat(0, Vec(x*(3 - 5*x) / ((1 + x)*(1 - 2*x)^2) + O(x^40))) \\ Colin Barker, Aug 24 2017

Formula

G.f.: (3 x - 5 x^2)/((1 + x) (-1 + 2 x)^2).
a(n) = 3*a(n-1) - 4*a(n-3) for n >= 4.
a(n) = (16*((-1)^(1+n) + 2^n) + 3*2^n*n) / 18. - Colin Barker, Aug 24 2017

A291142 a(n) = (1/4)*A291024(n).

Original entry on oeis.org

0, 1, 2, 6, 16, 43, 114, 300, 784, 2037, 5266, 13554, 34752, 88799, 226210, 574680, 1456352, 3682409, 9292002, 23403102, 58842416, 147713043, 370262930, 926852868, 2317191024, 5786293597, 14433117938, 35964267594, 89528469088, 222666575815, 553319176770
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - 3 s^2 + 2 s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291024 *)
    u/4 (* A291142 *)
  • PARI
    concat(0, Vec(x*(1 - 2*x) / (1 - 2*x - x^2)^2 + O(x^40))) \\ Colin Barker, Aug 24 2017

Formula

G.f.: -(((-x + 2 x^2))/(-1 + 2 x + x^2)^2).
a(n) = 4*a(n-1) - 2 a(n-2) - 4*a(n-3) - a(n-4) for n >= 5.
a(n) = (1/4)*A291024(n) for n >= 0.
a(n) = ((1+sqrt(2))^n*(3*sqrt(2) + 2*(-1+sqrt(2))*n) - (1-sqrt(2))^n*(3*sqrt(2) + 2*(1+sqrt(2))*n)) / 16. - Colin Barker, Aug 24 2017

A291143 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^3)^3.

Original entry on oeis.org

0, 0, 3, 9, 18, 36, 81, 189, 430, 954, 2097, 4602, 10080, 21996, 47796, 103473, 223308, 480584, 1031571, 2208807, 4718610, 10058580, 21398715, 45438270, 96313626, 203812110, 430615240, 908455203, 1913845374, 4026531804, 8460687861, 17756508321, 37223049942
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = (1 - s^3)^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291143 *)
    LinearRecurrence[{9, -36, 87, -144, 171, -147, 90, -36, 8}, {0, 0, 3, 9, 18, 36, 81, 189, 430}, 40] (* Vincenzo Librandi, Aug 29 2017 *)
  • PARI
    concat(vector(2), Vec(x^2*(3 - 18*x + 45*x^2 - 63*x^3 + 54*x^4 - 27*x^5 + 7*x^6) / ((1 - 2*x)^3*(1 - x + x^2)^3) + O(x^30))) \\ Colin Barker, Aug 24 2017

Formula

a(n) = 9*a(n-1) - 36 a(n-2) + 87*a(n-3) - 144*a(n-4) + 171*a(n-5) - 147*a(n-6) + 90*a(n-7) - 36*a(n-8) + 8*a(n-9) for n >= 10.
G.f.: x^2*(3 - 18*x + 45*x^2 - 63*x^3 + 54*x^4 - 27*x^5 + 7*x^6) / ((1 - 2*x)^3*(1 - x + x^2)^3). - Colin Barker, Aug 24 2017
Previous Showing 71-80 of 81 results. Next