A290929
p-INVERT of the positive integers, where p(S) = (1 - S)(1 - S^2).
Original entry on oeis.org
1, 4, 13, 39, 114, 330, 948, 2703, 7655, 21554, 60389, 168468, 468199, 1296826, 3581185, 9862749, 27096216, 74277342, 203200986, 554869701, 1512575195, 4116813032, 11188568267, 30367047720, 82316338381, 222875101936, 602784607477, 1628612506131
Offset: 0
-
I:=[1,4,13,39,114,330]; [n le 6 select I[n] else 7*Self(n-1)-18*Self(n-2)+23*Self(n-3)-18*Self(n-4)+7*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
z = 60; s = x/(1 - x)^2; p = (1 - s)(1 - s^2);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290929 *)
LinearRecurrence[{7, -18, 23, -18, 7, -1}, {1, 4, 13, 39, 114, 330}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
-
Vec((1 - 3*x + 3*x^2 - 3*x^3 + x^4) / ((1 - 3*x + x^2)^2*(1 - x + x^2)) + O(x^30)) \\ Colin Barker, Aug 19 2017
A290930
p-INVERT of the positive integers, where p(S) = (1 - S^2)(1 - 2*S^2).
Original entry on oeis.org
0, 3, 12, 37, 116, 372, 1188, 3763, 11860, 37261, 116760, 365056, 1139224, 3549635, 11045804, 34335421, 106633804, 330916268, 1026277180, 3181108619, 9855901108, 30524529485, 94506627952, 292521594048, 905220237168, 2800700318291, 8663793207244
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -25, 44, -54, 44, -25, 8, -1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s^2)(1 - 2s^2);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290930 *)
A291025
p-INVERT of the positive integers, where p(S) = 1 - 3*S + S^2.
Original entry on oeis.org
3, 14, 62, 273, 1200, 5271, 23146, 101626, 446181, 1958880, 8600043, 37756502, 165760934, 727733433, 3194937360, 14026596927, 61580365906, 270353629378, 1186921889997, 5210892012480, 22877154557139, 100436585338334, 440942410322894, 1935850452749409
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 3 s + s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291025 *)
LinearRecurrence[{7,-13,7,-1},{3,14,62,273},30] (* Harvey P. Dale, Jun 22 2022 *)
A291026
p-INVERT of the positive integers, where p(S) = 1 - 4*S + S^2.
Original entry on oeis.org
4, 23, 128, 711, 3948, 21920, 121700, 675673, 3751296, 20826953, 115629868, 641969344, 3564171060, 19788040311, 109861881472, 609945846247, 3386378699324, 18800948912352, 104381615697460, 579519775642745, 3217455182279552, 17863096800262569
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 4 s + s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291026 *)
LinearRecurrence[{8,-15,8,-1},{4,23,128,711},30] (* Harvey P. Dale, May 18 2024 *)
A291027
p-INVERT of the positive integers, where p(S) = 1 - 5*S + S^2.
Original entry on oeis.org
5, 34, 226, 1501, 9968, 66195, 439582, 2919134, 19385099, 128730656, 854861845, 5676882210, 37698479330, 250344342349, 1662462010576, 11039913707011, 73312769785118, 486848208799710, 3233013554202907, 21469477452590144, 142572387761274149, 946780646936461346
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 5 s + s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291027 *)
A291028
p-INVERT of the positive integers, where p(S) = 1 - 6*S + S^2.
Original entry on oeis.org
6, 47, 362, 2787, 21456, 165180, 1271644, 9789793, 75367038, 580215573, 4466808294, 34387867640, 264736107506, 2038079457267, 15690220398162, 120791667500967, 929918545909756, 7159007901103540, 55113853093361544, 424295774604244773, 3266454697733704038
Offset: 0
-
I:=[6,47,362,2787]; [n le 4 select I[n] else 10*Self(n-1)-19*Self(n-2)+10*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - 6 s + s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291028 *)
LinearRecurrence[{10, -19, 10, -1}, {6, 47, 362, 2787}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
A291029
p-INVERT of the positive integers, where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 4, 15, 55, 198, 706, 2510, 8923, 31737, 112918, 401799, 1429744, 5087461, 18102522, 64413263, 229198253, 815544198, 2901909494, 10325718678, 36741486569, 130735386073, 465189151460, 1655259161187, 5889825416864, 20957469541173, 74571909803996
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291029 *)
A291031
p-INVERT of the positive integers, where p(S) = 1 - 3*S + 2*S^3.
Original entry on oeis.org
3, 15, 70, 321, 1461, 6624, 29967, 135399, 611318, 2758881, 12447753, 56154744, 253306119, 1142572767, 5153589754, 23244956169, 104843981505, 472885383744, 2132882300571, 9620044596687, 43389716584682, 195702453488433, 882684641446989, 3981207177094608
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 3 s + 2 s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291031 *)
A291032
p-INVERT of the positive integers, where p(S) = 1 - S - S^2 - S^3 + S^4.
Original entry on oeis.org
1, 4, 15, 54, 188, 645, 2208, 7570, 25982, 89190, 306095, 1050268, 3603276, 12361763, 42409154, 145491117, 499126660, 1712311759, 5874263702, 20152234481, 69134134820, 237171010852, 813636681973, 2791253840066, 9575645985794, 32850107071454, 112695214040224
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -33, 68, -87, 68, -33, 9, -1)
-
z = 60; s = x/(1 - x)^2; p =1 - s - s^2 - s^3 + s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291032 *)
A291034
p-INVERT of the positive integers, where p(S) = 1 - 7*S.
Original entry on oeis.org
7, 63, 560, 4977, 44233, 393120, 3493847, 31051503, 275969680, 2452675617, 21798110873, 193730322240, 1721774789287, 15302242781343, 135998410242800, 1208683449403857, 10742152634391913, 95470690260123360, 848494059706718327, 7540975847100341583
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 7 s;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291034 *)
Comments