cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A291218 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 5, 0, 15, 1, 35, 10, 70, 55, 127, 220, 225, 715, 450, 2003, 1175, 5025, 3775, 11650, 12630, 25850, 40150, 57475, 118425, 134883, 325075, 345090, 840725, 952195, 2083888, 2722455, 5056055, 7765010, 12293890, 21615771, 30591685, 58293475
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    I:=[0,0,0,0,1,0,5,0,15,1]; [n le 10 select I[n] else 5*Self(n-2)-10*Self(n-4)+Self(n-5)+10*Self(n-6)-5*Self(n-8)+Self(n-10): n in [1..45]]; // Vincenzo Librandi, Aug 25 2017
  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291218 *)
    LinearRecurrence[{0, 5, 0, -10, 1, 10, 0, -5, 0, 1}, {0, 0, 0, 0, 1, 0, 5, 0, 15, 1}, 50] (* Vincenzo Librandi, Aug 25 2017 *)

Formula

G.f.: -(x^4/((-1 + x + x^2) (1 + x - 3 x^2 - 2 x^3 + 5 x^4 + 2 x^5 - 3 x^6 - x^7 + x^8))).
a(n) = 5*a(n-2) - 10*a(n-4) + a(n-5) + 10* a(n-6) - 5*a(n-8) + a(n-10) for n >= 11.

A291220 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^4.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 27, 55, 101, 199, 370, 718, 1347, 2595, 4898, 9397, 17803, 34066, 64682, 123561, 234917, 448289, 852979, 1626689, 3096695, 5903316, 11241426, 21424775, 40805833, 77759648, 148118585, 282229961, 537636210, 1024373916, 1951472023, 3718072991
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291220 *)
  • PARI
    Vec((1 + x - x^2)*(1 - x - x^2 + x^3 + x^4) / ((1 - x - 2*x^2 + x^4)*(1 - 2*x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Aug 25 2017

Formula

a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 5*a(n-4) + 3*a(n-5) + 4*a(n-6) - a(n-7) - a(n-8) for n >= 9.
G.f.: (1 + x - x^2)*(1 - x - x^2 + x^3 + x^4) / ((1 - x - 2*x^2 + x^4)*(1 - 2*x^2 + x^3 + x^4)). - Colin Barker, Aug 25 2017

A291221 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^3 - S^6.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 6, 12, 13, 42, 42, 117, 156, 312, 531, 894, 1641, 2757, 4866, 8643, 14525, 26637, 44292, 80738, 136563, 243747, 420347, 739188, 1286250, 2252976, 3921546, 6879438, 11951510, 20993796, 36461328, 64002901, 111314775, 195060591, 339831254
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s^3 - s^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291221 *)
  • PARI
    concat(vector(2), Vec(x^2*(1 + x - x^2)*(1 - x - x^2 + x^3 + x^4) / (1 - 6*x^2 - x^3 + 15*x^4 + 3*x^5 - 21*x^6 - 3*x^7 + 15*x^8 + x^9 - 6*x^10 + x^12) + O(x^60))) \\ Colin Barker, Aug 25 2017

Formula

a(n) = a(n-2) + 6*a(n-2) - 15*a(n-3) - 3*a(n-4) + 21*a(n-5) + 3*a(n-6) - 15*a(n-7) - a(n-8) - a(n-10) for n >= 11.
G.f.: x^2*(1 + x - x^2)*(1 - x - x^2 + x^3 + x^4) / (1 - 6*x^2 - x^3 + 15*x^4 + 3*x^5 - 21*x^6 - 3*x^7 + 15*x^8 + x^9 - 6*x^10 + x^12). - Colin Barker, Aug 25 2017

A291222 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^2 - S^3.

Original entry on oeis.org

0, 1, 1, 3, 5, 9, 19, 30, 66, 106, 223, 379, 753, 1345, 2565, 4723, 8816, 16456, 30480, 57093, 105677, 197751, 366697, 684765, 1272311, 2371846, 4412898, 8218386, 15300891, 28483823, 53042669, 98734485, 183863833, 342263703, 637320032, 1186464528, 2209131168
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291222 *)
  • PARI
    concat(0, Vec(x*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 4*x^4 - x^6) + O(x^40))) \\ Colin Barker, Aug 25 2017

Formula

a(n) = 4*a(n-2) + a(n-3) - 4*a(n-4) + a(n-6) for n >= 7.
G.f.: x*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 4*x^4 - x^6). - Colin Barker, Aug 25 2017

A291223 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^3 - S^4.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 8, 17, 25, 52, 83, 159, 271, 497, 868, 1572, 2762, 4984, 8784, 15799, 27939, 50089, 88831, 158880, 282293, 504179, 896780, 1600335, 2848339, 5080363, 9045953, 16129172, 28726972, 51209648, 91223508, 162594868, 289675121, 516264093
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s^3 - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291223 *)
  • PARI
    concat(vector(2), Vec(x^2*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 5*x^4 + x^5 - 4*x^6 + x^8) + O(x^50))) \\ Colin Barker, Aug 25 2017

Formula

a(n) = 4*a(n-2) + a(n-3) - 5*a(n-4) - a(n-5) + 4*a(n-6) - a(n-8) for n >= 9.
G.f.: x^2*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 5*x^4 + x^5 - 4*x^6 + x^8). - Colin Barker, Aug 25 2017

A291224 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)^4.

Original entry on oeis.org

4, 10, 24, 55, 120, 254, 524, 1059, 2104, 4120, 7968, 15244, 28888, 54284, 101240, 187537, 345268, 632122, 1151408, 2087485, 3768280, 6775322, 12136940, 21666712, 38555100, 68401582, 121011800, 213521067, 375813760, 659910710, 1156204452, 2021495767
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291224 *)
    LinearRecurrence[{4,-2,-8,5,8,-2,-4,-1},{4,10,24,55,120,254,524,1059},40] (* Harvey P. Dale, Mar 22 2025 *)
  • PARI
    Vec((2 - x - 2*x^2)*(2 - 2*x - 3*x^2 + 2*x^3 + 2*x^4) / (1 - x - x^2)^4 + O(x^40)) \\ Colin Barker, Aug 25 2017

Formula

a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) for n >= 9.
G.f.: (2 - x - 2*x^2)*(2 - 2*x - 3*x^2 + 2*x^3 + 2*x^4) / (1 - x - x^2)^4. - Colin Barker, Aug 25 2017

A291225 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)^5.

Original entry on oeis.org

5, 15, 40, 100, 236, 535, 1175, 2515, 5270, 10846, 21980, 43950, 86850, 169840, 329042, 632135, 1205205, 2281925, 4293270, 8030558, 14940700, 27659095, 50968455, 93518940, 170905555, 311159365, 564521620, 1020800470, 1840124050, 3307314163, 5927828905
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)^5;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291225 *)
  • PARI
    Vec((5 - 10*x - 10*x^2 + 25*x^3 + 11*x^4 - 25*x^5 - 10*x^6 + 10*x^7 + 5*x^8) / (1 - x - x^2)^5 + O(x^40)) \\ Colin Barker, Aug 28 2017

Formula

a(n) = 5*a(n-1) - 5*a(n-2) - 10*a(n-3) + 15*a(n-4) + 11*a(n-5) - 15*a(n-6) - 10*a(n-7) + 5*a(n-8) + 5*a(n-9) + a(n-10) for n >= 11.
G.f.: (5 - 10*x - 10*x^2 + 25*x^3 + 11*x^4 - 25*x^5 - 10*x^6 + 10*x^7 + 5*x^8) / (1 - x - x^2)^5. - Colin Barker, Aug 28 2017

A291226 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)^6.

Original entry on oeis.org

6, 21, 62, 168, 426, 1029, 2394, 5403, 11892, 25626, 54228, 112958, 232056, 470904, 945152, 1878351, 3699666, 7227807, 14015538, 26991978, 51654946, 98275461, 185958162, 350093468, 655988730, 1223722623, 2273327418, 4206691146, 7755620994, 14248825833
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291226 *)

Formula

G.f.: -(((-2 + x + 2 x^2) (1 - x - x^2 + x^3 + x^4) (3 - 3 x - 5 x^2 + 3 x^3 + 3 x^4))/(-1 + x + x^2)^6)
a(n) = 6*a(n-1) - 9*a(n-2) - 10*a(n-3) + 30*a(n-4) + 6*a(n-5) - 41*a(n-6) - 6*a(n-7) + 30*a(n-8) + 10*a(n-9) - 9*a(n-10) - 6*a(n-11) - a(n-12) for n >= 13.

A291229 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)(1 - 2 S).

Original entry on oeis.org

3, 7, 18, 45, 111, 272, 663, 1611, 3906, 9457, 22875, 55296, 133611, 322751, 779490, 1882341, 4545159, 10974256, 26496255, 63970947, 154444914, 372871721, 900206067, 2173312512, 5246877459, 12667142455, 30581283762, 73829906397, 178241414367, 430313249360
Offset: 0

Views

Author

Clark Kimberling, Aug 25 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)(1 - 2 s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291229 *)

Formula

G.f.: -((-3 + 2 x + 3 x^2)/((-1 + x + x^2) (-1 + 2 x + x^2))).
a(n) = 3*a(n-1) - 2*a(n-3) - a(n-4) for n >= 5.

A291230 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)(1 - 2 S)(1 - 3 S).

Original entry on oeis.org

6, 25, 96, 351, 1242, 4304, 14706, 49761, 167232, 559303, 1864110, 6197472, 20567262, 68166713, 225713280, 746866143, 2470077378, 8166190192, 26990599050, 89190984033, 294691499808, 973574384231, 3216160413654, 10623856065984, 35092075282998, 115910575744921
Offset: 0

Views

Author

Clark Kimberling, Aug 25 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)(1 - 2 s)(1 - 3 s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291230 *)

Formula

G.f.: (-6 + 11 x + 6 x^2 - 11 x^3 - 6 x^4)/(-1 + 6 x - 8 x^2 - 6 x^3 + 8 x^4 + 6 x^5 + x^6).
a(n) = 6*a(n-1) - 8*a(n-2) - 6*a(n-3) + 8*a(n-4) + 6*a(n-5) + a(n-6) for n >= 7.
Previous Showing 11-20 of 48 results. Next