cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A291231 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S).

Original entry on oeis.org

10, 65, 360, 1831, 8830, 41104, 186710, 833401, 3672840, 16034303, 69506930, 299700192, 1287010850, 5509712833, 23531008200, 100312445063, 427025152550, 1815832379312, 7714875191470, 32756357939033, 139008007848360, 589672772732671, 2500620567692890
Offset: 0

Views

Author

Clark Kimberling, Aug 26 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)(1 - 2 s)(1 - 3 s)(1 - 4 s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291231 *)

Formula

G.f.: (10 - 35 x + 20 x^2 + 46 x^3 - 20 x^4 - 35 x^5 - 10 x^6)/(1 - 10 x + 31 x^2 - 20 x^3 - 40 x^4 + 20 x^5 + 31 x^6 + 10 x^7 + x^8).
a(n) = 10*a(n-1) - 31*a(n-2) + 20*a(n-3) + 40*a(n-4) - 20*a(n-5) -31*a(n-6) - 10*a(n-7) - a(n-8) for n >= 7.

A291233 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 2, 5, 11, 26, 58, 134, 303, 693, 1576, 3593, 8184, 18645, 42480, 96773, 220481, 502290, 1144350, 2607062, 5939501, 13531493, 30827806, 70232669, 160005808, 364529269, 830479602, 1892019493, 4310445875, 9820165646, 22372546322, 50969693930, 116120429167
Offset: 0

Views

Author

Clark Kimberling, Aug 26 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291233 *)

Formula

G.f.: (-1 - x + x^2 + x^3 - x^4)/(-1 + x + 4 x^2 - x^3 - 4 x^4 + x^5 + x^6).
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - 4*a(n-4) + a(n-5) + a(n-6) for n >= 7.

A291234 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 - S^3 - S^4.

Original entry on oeis.org

1, 2, 5, 12, 28, 67, 156, 370, 866, 2044, 4799, 11304, 26574, 62547, 147108, 346149, 814270, 1915795, 4506952, 10603417, 24945414, 58687660, 138068915, 324824928, 764187814, 1797846170, 4229645000, 9950753025, 23410332344, 55075627972, 129572006209
Offset: 0

Views

Author

Clark Kimberling, Aug 26 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s - s^2 - s^3 - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291234 *)

Formula

G.f.: (1 + x - 2 x^2 - x^3 + 2 x^4 + x^5 - x^6)/(1 - x - 5 x^2 + 2 x^3 + 7 x^4 - 2 x^5 - 5 x^6 + x^7 + x^8).
a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 7*a(n-4) + 2*a(n-5) + 5*a(n-6) - a(n-7) - a(n-8) for n >= 9.

A291235 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 - S^3 - S^4 - S^5.

Original entry on oeis.org

1, 2, 5, 12, 29, 69, 166, 394, 944, 2245, 5365, 12781, 30506, 72734, 173520, 413838, 987130, 2354465, 5615889, 13395047, 31949764, 76206828, 181768094, 433554067, 1034112065, 2466566144, 5883251633, 14032736684, 33470882601, 79834762768, 190421890053
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s - s^2 - s^3 - s^4 - s^5;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291235 *)

Formula

G.f.: -((1 + x - 3 x^2 - 2 x^3 + 5 x^4 + 2 x^5 - 3 x^6 - x^7 + x^8)/(-1 + x + 6 x^2 - 3 x^3 - 12 x^4 + 5 x^5 + 12 x^6 - 3 x^7 - 6 x^8 + x^9 + x^10))
a(n) = a(n-1) + 6*a(n-2) - 3*a(n-3) - 12*a(n-4) + 5*a(n-5) + 12*a(n-6) - 3*a(n-7) - 6*a(n-8) + a(n-9) + a(n-10) for n >= 11.

A291236 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)(1 - 3 S).

Original entry on oeis.org

4, 13, 44, 147, 488, 1616, 5344, 17661, 58348, 192739, 636620, 2102688, 6944828, 22937405, 75757420, 250210275, 826389232, 2729379568, 9014530520, 29772975309, 98333463212, 324773375891, 1072653608596, 3542734230336, 11700856345972, 38645303343277
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)(1 - 3s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291236 *)

Formula

G.f.: (4 - 3 x - 4 x^2)/(1 - 4 x + x^2 + 4 x^3 + x^4).
a(n) = 4*a(n-1) - a(n-2) - 4*a(n-3) - a(n-4) for n >= 5.

A291237 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)(1 - 2 S)(1 - 4 S).

Original entry on oeis.org

7, 35, 162, 721, 3139, 13504, 57707, 245671, 1043634, 4428053, 18774815, 79573152, 337178159, 1428553243, 6052037010, 25638260873, 108608846171, 460082737472, 1948961747155, 8255982722783, 34973020586946, 148148373971341, 627567262233463, 2658419223345984
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)(1 - 2s)(1 - 4 s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291237 *)

Formula

G.f.: (-7 + 14 x + 6 x^2 - 14 x^3 - 7 x^4)/(-1 + 7 x - 11 x^2 - 6 x^3 + 11 x^4 + 7 x^5 + x^6).
a(n) = 7*a(n-1) - 11*a(n-2) - 6*a(n-3) + 11*a(n-4) + 7*a(n-5) + a(n-6) for n >= 7.

A291238 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)^2 (1 - 2 S).

Original entry on oeis.org

4, 11, 30, 79, 202, 508, 1262, 3109, 7614, 18569, 45152, 109560, 265448, 642463, 1553790, 3755843, 9075302, 21923060, 52949458, 127869209, 308767326, 745537309, 1800065788, 4346043888, 10492781068, 25332654899, 61159842270, 147655261111, 356475233986
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s)^2(1 - 2s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291238 *)

Formula

G.f.: (-4 + 5 x + 6 x^2 - 5 x^3 - 4 x^4)/((-1 + x + x^2)^2 (-1 + 2 x + x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 6*a(n-3) + 2*a(n-4) + 4*a(n-5) + a(n-6) for n >= 7.

A291239 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S^2) (1 - 2 S).

Original entry on oeis.org

2, 5, 12, 31, 74, 184, 442, 1081, 2604, 6323, 15250, 36912, 89074, 215293, 519660, 1255223, 3030106, 7317032, 17664170, 42649553, 102963276, 248587051, 600137378, 1448890464, 3497918306, 8444802101, 20387522508, 49220043535, 118827609578, 286875776920
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s^2)(1 - 2s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291239 *)

Formula

G.f.: (-2 - x + 6 x^2 + x^3 - 2 x^4)/(-1 + 2 x + 4 x^2 - 6 x^3 - 4 x^4 + 2 x^5 + x^6).
a(n) = 2*a(n-1) + 4*a(n-2) - 6*a(n-3) - 4*a(n-4) + 2*a(n-5) + a(n-6) for n >= 7.

A291240 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S^3)^2.

Original entry on oeis.org

0, 0, 2, 0, 6, 3, 12, 18, 24, 63, 66, 173, 222, 438, 722, 1146, 2142, 3213, 5958, 9327, 16210, 26898, 44400, 75875, 123252, 210240, 344160, 578052, 958200, 1588404, 2650008, 4370292, 7285684, 12022704, 19960488, 33008505, 54594504, 90368550, 149168350
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x^2); p = (1 - s^3)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291240 *)
    LinearRecurrence[{0, 6, 2, -15, -6, 19, 6, -15, -2, 6, 0, -1}, {0, 0, 2, 0, 6, 3, 12, 18, 24, 63, 66, 173}, 40] (* Vincenzo Librandi, Aug 29 2017 *)

Formula

G.f.: -((x^2 (-2 + 6 x^2 + x^3 - 6 x^4 + 2 x^6))/((-1 + x + x^2)^2 (1 + x - x^2 - x^3 + x^4)^2)).
a(n) = 6*a(n-2) + 2*a(n-3) - 15*a(n-4) - 6*a(n-5) + 19*a(n-6) + 6*a(n-7) - 15*a(n-8) - 2*a(n-9) + 6*a(n-10) - a(n-12) for n >= 13.

A291241 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 + S^3.

Original entry on oeis.org

1, 2, 3, 7, 10, 22, 32, 67, 99, 200, 299, 588, 887, 1708, 2595, 4913, 7508, 14018, 21526, 39725, 61251, 111922, 173173, 313752, 486925, 875702, 1362627, 2434747, 3797374, 6746350, 10543724, 18636343, 29180067, 51340988, 80521055, 141089508, 221610563
Offset: 0

Views

Author

Clark Kimberling, Aug 28 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    I:=[1,2,3,7,10,22]; [n le 6 select I[n] else Self(n-1)+4*Self(n-2)-3*Self(n-3)-4*Self(n-4)+Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 29 2017
  • Mathematica
    z = 60; s = x/(1 - x^2); p = 1 - s - s^2 + s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291241 *)
    LinearRecurrence[{1, 4, -3, -4, 1, 1}, {1, 2, 3, 7, 10, 22}, 40] (* Vincenzo Librandi, Aug 29 2017 *)

Formula

G.f.: (-1 - x + 3 x^2 + x^3 - x^4)/((-1 - x + x^2) (-1 + x + x^2)^2).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5) + a(n-6) for n >= 7.
Previous Showing 21-30 of 48 results. Next