cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A304173 Number of rooted plane trees where every branch that has a predecessor (a branch directly to its left and emanating from the same root) has at least as many leaves as its predecessor.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 90, 242, 660, 1822, 5085, 14333, 40759, 116817, 337140, 979098, 2859439, 8393113, 24747052, 73262246, 217681621, 648939319, 1940461444, 5818595438, 17492367097, 52712114792, 159193762250, 481754196170, 1460650624068, 4436422703787, 13496947320929
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2018

Keywords

Examples

			The a(5) = 13 plane trees:
  ((((o)))), (((oo))), (((o)o)), ((o(o))), ((ooo)),
  (((o))o), (o((o))), (o(oo)), ((o)(o)),
  ((o)oo), (o(o)o), (oo(o)),
  (oooo).
Missing from this list is ((oo)o).
		

Crossrefs

Programs

  • Mathematica
    pplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[pplane/@c],OrderedQ[Count[#,{},{0,Infinity}]&/@#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[pplane[n]],{n,10}]
  • PARI
    seq(n)={my(p=x*y+O(x^2)); for(n=2, n, p=x*(y-1 + 1/prod(k=1, n-1, 1 - y^k*polcoef(p,k,y)))); Vec(subst(p,y,1))} \\ Andrew Howroyd, Jan 22 2021

Formula

G.f.: A(x,1) where A(x,y) satisfies A(x,y) = x*(y-1 + 1/(Product_{k>=1} 1 - y^k * [y^k] A(x,y))). - Andrew Howroyd, Jan 22 2021

Extensions

Terms a(15) and beyond from Andrew Howroyd, Jan 22 2021

A304175 Number of leaf-balanced rooted plane trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 59, 128, 277, 597, 1280, 2730, 5794, 12248, 25836, 54508, 115222, 244144, 518104, 1099499, 2330326, 4930089, 10415135, 21992400, 46470911, 98353146, 208580686, 443186181, 942988423, 2007981801, 4276830431, 9109431322, 19404918449, 41357252072, 88236092543
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2018

Keywords

Comments

A rooted plane tree is leaf-balanced if every branch of the root has the same number of leaves, and every branch of the root is itself leaf-balanced.

Examples

			The a(5) = 12 leaf-balanced plane trees:
  ((((o)))), (((oo))), (((o)o)), ((o(o))), ((ooo)),
  (((o))o), (o((o))), ((o)(o)),
  ((o)oo), (o(o)o), (oo(o)),
  (oooo).
Missing from this list are ((oo)o) and (o(oo)).
		

Crossrefs

Programs

  • Mathematica
    lbplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[lbplane/@c],SameQ@@(Count[#,{},{0,Infinity}]&/@#)&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[lbplane[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=x/(1-x) + O(x*x^n); for(k=2, n, v[k]=x*sumdiv(k, d, if(dAndrew Howroyd, Dec 13 2020

Extensions

Terms a(17) and beyond from Andrew Howroyd, Dec 13 2020

A298535 Number of unlabeled rooted trees with n vertices such that every branch of the root has a different number of leaves.

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 32, 80, 200, 511, 1323, 3471, 9183, 24491, 65715, 177363, 481135, 1311340, 3589023, 9860254, 27181835, 75165194, 208439742, 579522977, 1615093755, 4511122964, 12625881944, 35405197065, 99459085125, 279861792874, 788712430532, 2226015529592
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],UnsameQ@@(Count[#,{},{0,Infinity}]&/@#)&]],{n,15}]
  • PARI
    \\ here R is A055277 as vector of polynomials
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    seq(n) = {my(M=Mat(apply(p->Colrev(p,n), R(n-1)))); Vec(prod(i=2, #M, 1 + x*Ser(M[i,])))} \\ Andrew Howroyd, May 20 2018

Extensions

Terms a(19) and beyond from Andrew Howroyd, May 20 2018

A298537 Number of unlabeled rooted trees with n nodes such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 25, 49, 127, 291, 766, 1843, 5003, 12487, 34151, 87983, 242088, 634848, 1763749, 4688677, 13085621, 35241441, 98752586, 268282856, 755353825, 2067175933, 5837592853, 16087674276, 45550942142, 126186554309, 358344530763, 997171512999
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 6 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), ((o)(o)), (oooo).
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=r[n]=If[n===1,1,Sum[Product[Binomial[r[x]+Count[ptn,x]-1,Count[ptn,x]],{x,Union[ptn]}],{ptn,IntegerPartitions[n-1]}]];
    Table[If[n===1,1,Sum[Binomial[r[(n-1)/d]+d-1,d],{d,Divisors[n-1]}]],{n,40}]

Formula

a(n + 1) = Sum_{d|n} binomial(A000081(n/d) + d - 1, d).
Previous Showing 11-14 of 14 results.